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1. Introduction

This deliverable presents performance optimisations of all simulation software addressed within
the ENERXICO project. It is the second of a series of three deliverables in ENERXICO’s work
package WP1 on “Exascale Enabling”. It thus continues on Deliverable D1.1, in which the focus
has been on performance and scalability assessment. Bottlenecks identified in the first deliverable
are now being addressed by the ENERXICO researchers and first optimisations have been carried
out.

For each code we will first summarise the findings of the performance assessment performed for
Deliverable D1.1. Here we distinguish between the audits, which have been done in cooperation
with the POP CoE, own performance measurements during the ENERXICO project and other
assessments. We also point out further measurements that came up during the work on D1.2. For
each exascale optimisation target we explain the strategy and report on work executed to improve
performance and scalability, Performance measurements demonstrate respective achievements.
Finally, we summarise the status of every code and lay out its progress on the road to exascale.
In addition we point out further steps for the remaining project period.

2. Highlights

For each code we summarise the targets, which have been achieved in the ENERXICO project.

ALYA One of the main goals was to improve the execution time in parallel runs by reducing the
load imbalance found in some scenarios. By using the Dynamic Load Balancing Library
(DLB) when simulating particle-dominated systems (10M of particles) we can achieve speed-
ups up to 3.5×, reducing this improvement up to 1.5× for fluid-dominated systems (0.5M
of particles).

BSIT The objectives of the work were to optimise BSIT code for Nvidia Volta GPUs. We
have implemented and evaluated the effect of some traditional approaches to improve finite
difference codes in Volta GPUs, such as blocking, shared memory, register streaming and
shuffle instructions. Our fully optimised code shows a speed-up of about 2× when compared
with an unoptimised version. Furthermore, we obtain a speed-up of about 3.5× when
compared with older accelerators like Intel Xeon Phi, and more than 5× when compared
to state of the art HPC processors like Intel Xeon Scalable.

DualSPHysics The POP CoE Performance and Scalability Analysis, which has been delayed
for Deliverable 1.1, has now been completed. The extension of the code to multi-GPU is
underway, we have important advances but we have encountered several difficulties that
are related to architecture differences between old and new GPUs that are expected to be
solved within the next few months. An update of the POP audit will then be necessary for
the latest GPU architectures.

ExaHyPE The objectives of the work were to port and perform scaling analysis on AMD Rome
Zen2 architecture by taking into account the NUMA architecture. The scaling is performed
on up to 11000 cores. By targeting AVX2 instruction sets, the optimised XSMM library
achieves a speed up of 69% compared to a generic implementation of GEMM.

SeisSol A major goal was to optimise SeisSol, which was originally targeted to Intel archi-
tectures, for AMD processors. We identified a more pronounced NUMA architecture as
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major difference. By using NUMA aware parallelisation techniques we were able to achieve
a speedup of ≈ 26% on AMD Rome architectures. The optimisations were also evaluated
on Intel Skylake and achieved a speedup ≈ 18%.

SEM46 Following the results of the POP audit, the vectorisation enablings and improvement of
the memory management allowed to achieve an 24% gain in the computational time in the
isotropic approximation. For the next steps, these optimisation principles shall be carried
out in the anisotropic approximation. The outcome shall be tested on a large scale test
case to incite the communication optimisations already introduced.

WRF The objective of the work was to perform scaling analysis on the Intel Gold Architecture
for identifying bottlenecks of the code. The analysis is made following the methodology
defined by the POP CoE. It identified excessive communication calls that should be reduced.
Strong and weak scaling tests have been performed on up to 675 cores. By reducing
the aforementioned communication calls by introducing local variables in the modules of
interest, speed up of 8% compared to a generic implementation of the previous version is
achieved.
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3. ALYA

Alya is a high-performance computational mechanics code to solve engineering coupled prob-
lems. The different physics solved by Alya are incompressible/compressible flow, solid mechanics,
chemistry, particle transport, heat transfer, turbulence modelling, electrical propagation, among
others.

Multiphysics coupling is achieved in a multi-code manner. MPI is used to communicate between
the different instances of Alya, where each instance solves a particular physics, with the potential
of performing asynchronous executions of the different physics. Alya is specially designed for
massively parallel supercomputers.

Goals in ENERXICO In ENERXICO, we focus our efforts on improving Alya performance in
the context of WP4 (biofuels for transportation), which develops and implements models required
in the multiphysics code of Alya to investigate combustion processes of selected fuels.

The following table summarises the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

BSC 5

3.1. Performance and Scalability Assessment

Alya implements different levels of parallelisation including MPI for distributed memory systems,
OpenMP and OmpSs for shared memory [5] and GPU support among others. As far as the
parallelisation is concerned, in this work we rely exclusively on MPI as this is the version used
in production runs. The MPI parallelisation of Alya relies on Metis to partition the mesh in
subdomains. It should be noted that contrary to classical implementations of the Finite Volume
and Finite Difference methods, halo cells or halo nodes are not required to assemble the matrices
or residuals in the Finite-Element method [9]. Avoiding duplicated work on these cells, provides
a certain advantage in the assembly phase for the Finite-Element method, where the scalability
only depends upon the control of the load balance.

The Alya benchmarks have been performed on systems with Intel Skylake architectures (JUWELS
and MareNostrum4). MareNostrum4 is the Tier-0 system hosted by BSC, Spain. It is based on
Intel Xeon Platinum processors from the Skylake generation. It is a Lenovo system composed of
SD530 Compute Racks, an Intel Omni-Path high performance network interconnect and running
SuSE Linux Enterprise Server as operating system. Its current LINPACK R max Performance is
6.2272 Pflop/s. This general-purpose block consists of 48 racks housing 3456 nodes with a grand
total of 165,888 processor cores and 390 TB of main memory. JUWELS, the Jülich Wizard for
European Leadership Science, is the Tier-0 system hosted by the Jülich Supercomputing Centre,
Germany. JUWELS is an Atos Bull Sequana X1000 system with dual 24-core Intel Xeon Plat-
inum 8168 (Skylake) CPUs @ 2.7 GHz and an EDR-InfiniBand. The peak performance is 9.89
Pflop/s.

Benchmarking We have tested a Alya with two test cases:
Test Case A. A 132 million element mesh representing the flow around a sphere. It is expected

to scale up to 1500 MPI tasks.
Test Case B. A 1056 million element mesh representing the flow around a sphere. It is expected

to scale up to 12000 MPI tasks.
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The elapsed time of only the time-integration phase has been considered, since it is the dom-
inant part in the production runs of Alya. Likewise, the node workload for each system was
selected according to the similar configurations used in scientific simulations.

Table 1 and Table 2 present the results for the Skylake systems, JUWELS and MareNostrum4
for Case A and B respectively. We can observe better performance on JUWELS for all the cases
because the CPU frequency on JUWELS (2.7 GHz) is higher than on MareNostrum4 (2.1 GHz).

Number of cores
Time (s) Speedup Efficiency Time (s) Speedup Efficiency

JUWELS MareNostrum4

192 124.24 1.0 100% 129.45 1.0 100%
384 62.56 2.0 99% 67.45 1.9 96%
768 31.24 4.0 99% 33.93 3.8 95%
1536 16.45 7.6 94% 18.28 7.1 89%

Table 1: Alya results for Test Case A running in Skylake architectures.

Number of cores
Time (s) Speedup Efficiency Time (s) Speedup Efficiency

JUWELS MareNostrum4

1152 372.52 1.0 100% 451.38 1.0 100%
2304 196.48 1.9 95% 262.32 1.7 86%
4608 99.65 3.7 93% 124.98 3.6 90%
9216 61.34 6.1 76% 86.61 5.2 65%

Table 2: Alya results for Test Case B running in Skylake architectures.

Figure 1 and Figure 2 shows the speedup results for the Skylake systems, JUWELS and
MareNostrum4 for Case A and B respectively. We can observe that on all the cases is the
speedup is better in JUWELS than for MareNostrum4. One of the causes of this difference on
the efficiency is the network of each system, Mellanox EDR-InfiniBand on JUWELS and Intel
Omni-Path on MareNostrum4.

3.2. Improvements to Performance and Scalability

3.2.1. Dynamic load balance

Lagrangian particle tracking is of great interest in engineering. In the literature, particle tracking
is usually solved within the same code, after obtaining the solution of the Navier–Stokes equations.
However, in a distributed memory context, it is very likely that particles are concentrated in very
few MPI partitions, resulting in a very poor load balance. This work will thus address this issue:
the dynamic load balance applied at the MPI level of parallelism.

Synchronous and asynchronous couplings In this work, we only consider a one-way coupling,
which means that the particles are transported by the fluid but have negligible effects on the
fluid dynamics. Two solutions will be analysed and compared. First, synchronous coupling using
the same instance of the code, and thus the same subdomain partitioning for the fluid and the
particles. Second, in order to gain asynchronism, the fluid to particle coupling is also achieved
via a multi-code strategy using two instances of the Alya code. In this case, the fluid and particle
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Figure 1: Alya speedup for Test Case A running in Skylake architectures vs Ideal speedup.

domains are partitioned independently, with a different number of subdomains. At the end of a
time step, once the velocity and pressure of the fluid are obtained, the velocity field is sent to
the particle subdomains, via the MPI ISend function.

In the particle code using the synchronous coupling strategy, the load is dramatically imbal-
anced, and in the worst case, all the particles may be in a single subdomain. Moreover, even if
we were able to distribute the particles in a homogeneous manner, they will be migrating over
time and may end up producing a load imbalance. On the other hand, when using the asyn-
chronous coupling strategy, one must select the distribution of MPI processes between the fluid
and particle codes. Moreover, as the load of the particles will change during the execution, the
optimal distribution of MPI processes between fluid and particle codes can change as well.

To attack these problems, we implement a dynamic solution, which is applied at runtime, the
Dynamic Load Balancing Library (DLB). DLB [4] is an independent and interoperable dynamic
library that can help parallel applications improve their load balance. This library was developed
and is actively maintained by the BSC Computer Science team. DLB is applied at runtime
meaning that we do not need to analyse specific inputs or modify the application code. The
philosophy of the library is to exploit the computational resources (i.e. CPUs or cores) of the
MPI processes blocked in an MPI blocking call by other processes running on the same node,
by spawning more threads of the second level of parallelism (i.e. in our case, OpenMP). When
running with DLB, whenever an MPI process detects that it is not using its cores (i.e. it is waiting
in a blocking MPI call), it will lend its resources to the system. Another process running on the
same node can then use these cores and spawn more OpenMP threads to parallelise further the
end of its computation.

In Figure 3, we can see different traces of an execution of the Alya code with MPI processes
and two OpenMP threads each. The X-axis represents time and each horizontal line is a thread
(grouped by MPI process). In these traces, the blue colour represents computation of the fluid
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Figure 2: Alya speedup for Test Case B running in Skylake architectures vs Ideal speedup.

code, the green represents computation of the particle code and the orange global communications
(in black and white, from darker to lighter). The top image is the original execution, where we
can clearly see the imbalance of the particle code, and less spectacular, but significant, we can
see the imbalance of the fluid code. In the middle image, we can see the same execution with
DLB. In the bottom figure, we show a zoom of one of the nodes (the most loaded one and
consequently the bottleneck). We can see that when the particle code is running (green), only
one MPI process have computation to perform, and all the other MPI processes are waiting in
a global communication (orange). At this point, the process running the particles is able to use
the 16 cores of the node, by spawning 16 OpenMP threads. The same observation can be made
in the fluid code whenever imbalance is present.

Results In Figure 4, we can see the average execution times for the different configurations.
The first conclusion is that the performance, when the computation is dominated by the fluid
(0.5M particles, left-hand side charts), differs from the one obtained by the particle-dominated
execution (10M particles, right chart of the figure). This is due to the fact that the fluid and
the particle codes have different scalability behaviours, i.e. while the fluid code scales quite well
the particle code has a poor scalability due to the high load imbalance. Therefore, the global
scalability highly depends on which code dominates the computation. We can see how DLB can
help to improve the scalability by providing a better resource utilisation. When simulating 10M
of particles, DLB can make the execution between a 45% and 72% faster (a speed-up between
1.8 and 3.5 with the same number of resources). When running with 0.5M of particles, DLB
can run between 20% and 32% faster (a speed-up between 1.2 and 1.5 of the original code).
When analysing the performance of the asynchronous version, we can see that it depends on
the distribution of MPI processes among the fluids and the particles codes. Almost in all the
cases, we can find a configuration of MPI processes that perform better than the synchronous
version. But at the same time, when choosing any of the other configurations, we can see how the
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Figure 3: Global Alya traces and zoom.

performance drops; for some of the configurations, the asynchronous code with a bad distribution
can be two times slower than the synchronous one. Finally, we can observe that DLB is able to
hide the performance problem when using a bad distribution of MPI processes among the codes
(fluids and particles). The execution time when using DLB is almost constant independently of
which version we are running (synchronous or asynchronous) and how many MPI processes for
fluids and particles we are running.

3.3. Summary and Outlook

We have implemented a dynamic load balance strategy to mitigate the uneven distribution of
particles across the different MPI partitions. The dynamic load balance strategy equalises the
execution times of all possible configurations between fluid and particle MPI processes, thus
making the combination of MPI processes a less important decision from the user point of view.
Moreover, using DLB when simulating particle-dominated systems (10M of particles) we can
achieve speed-ups up to 3.5, reducing this improvement up to 1.5 for fluid-dominated systems
(0.5M of particles).
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Figure 4: Alya Timings. (From top to bottom: 16, 32, 64 nodes. (Left) 0.5M particles. (Right)
10M particles).
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4. BSIT

BSIT is a software platform, designed and developed to fulfil the geophysical exploration needs for
HPC applications. Geophysical exploration is a field that needs huge amounts of computational
resources. BSIT was developed to cope with such needs, including different types of processing
systems running over a wide range or HPC architectures. The main systems included in BSIT
are forward modelling, reverse time migration and full waveform inversion. In addition, the
software supports different rheologies including acoustic, acoustic with variable density, elastic,
viscoelastic and electromagnetic. Moreover, several levels of anisotropy are supported: VTI/HTI,
orthorhombic, TTI and arbitrary anisotropy (for elastic and viscoelastic rheologies).

Goals in ENERXICO In ENERXICO, we focus our efforts on improving BSIT performance in
the context of WP3 (Oil and Gas), which explores and evaluates methods implemented by BSIT
for realistic modelling scenarios proposed by the industrial partners of the project.

The following table summarises the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

BSC 5

4.1. Performance and Scalability Assessment

Known performance/scalability bottlenecks Roofline analysis shows a low arithmetic intensity
(common in stencil codes), GPU utilisation analysis confirms that performance is bounded by
the memory system. The limiting factor is the bandwidth in device memory.

Benchmarking We use roofline analysis [17] to evaluate how well BSIT performs in terms of
peak performance relative to the arithmetic intensity.

By using the roofline model, we provide an insight of our application behaviour placing its
performance into a graphical representation bounded by both the maximum (attainable) perfor-
mance FLOPS and the memory bandwidth. The model imposes a limit on the performance based
on the operational intensity of an application, showing how much room exists for improvement.

Using a maximum bandwidth of 900 GB/s via HBM (High Bandwidth Memory) and 14000
GFLOPS as maximum Floating Point (FP) performance, we can infer that a minimum opera-
tional intensity of ∼ 15.55 FP operations/byte would be needed to take advantage of the total
FP performance available in a Nvidia Volta GPU. Figure 5 depicts a roofline showing how close
we get to the attainable performance for each memory level. Table 3 details the roofline data.

4.2. Improvements to Performance and Scalability

Implemented measures L1 and L2 memory access should be improved to reuse data and in-
crease the arithmetic intensity. If arithmetic intensity is increased there is room for a performance
(GFLOPS) improvement. Also, efficiency can be increased by fixing data alignments and im-
proving memory access patterns.

Stencil codes like BSIT are usually bounded by memory bandwidth. Improving performance
relies on increasing arithmetic intensity so relative peak performance is increased too. Making a
clever use of the different memories on the device as well improving memory access patterns can
resolve in an overall improved performance.
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Figure 5: Roofline of attainable performance for each memory level running on Nvidia Volta
GPUs vs. the observed operational intensity.
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HBM 598.12 0.014 8.165 900
L2 595.60 0.014 8.165 4200
L1 412.79 0.057 8.165 ??

Table 3: Detailed performance data.

In general, achieving huge speed-ups is difficult for stencil memory bounded codes in mod-
ern HPC architectures. Consequently, we only expect minor speed-ups relative to the current
optimised version of the code.

4.2.1. Optimise BSIT for Nvidia Volta GPU architectures

When porting/re-implementing computational intensive kernels of code, users also face the deci-
sion to introduce hardware tailored optimisations that provide a most efficient version of the code
compared to a base implementation that does not consider the architecture where the program
will be running. We have implemented and evaluated the effect of some traditional approaches
to improve finite difference codes in Volta GPUs separately and all together, such as blocking,
shared memory, register streaming and shuffle instructions. We observe how each optimisation
affects the throughput of the whole compute kernel and each of the costly regions of the algo-
rithm. Additionally, we compare the performance obtained to the resulting throughput on the
Power 9 processor to which Voltas are connected and other Intel-based HPC architectures. We
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show that with very few optimisations and the computing capacity of the Voltas, the overall
obtained performance is higher compared with previous HPC hardware when evaluating finite
differences codes.

Our base implementation is the direct result of developing a Finite Differences (FD) method
over a Fully Staggered Grid [1] (FSG) grid. This will lead us to a loop in time where velocities are
updated based on stresses values in odd iterations and the other way around for even iterations.
To update velocities, 12 different 3D stencils plus another 12 3D material interpolations for each
point of the grid must be calculated. Materials are stored in a single vertex of the FSG cell for
memory saving issues, trading storage per computation. On the other hand, the computation
involves 28 3D-stencils calculations plus 84 3D interpolations for the material properties to update
stresses. Notice that both velocities and stresses calculations are typically dominated by accesses
to global memory to retrieve the data needed to update the corresponding values. Our baseline
version of the code shows the two innermost loops in space mapped to a 2D Cuda grid, streaming
cells to update to each thread over the slowest dimension (Y ), as seen in [14]. Thread block
dimensions have not been tuned for Volta architecture. Our work studies the effect of the following
optimisations applied to the baseline version, with the aim of improving the performance of FSG
in NVIDIA Volta GPU cards:
Y -dim blocking. Traditional approaches for finite differences codes in GPUs usually map 2D

thread blocks into ZX planes (i.e., faster dimensions). Then, each thread is in charge
to update velocities and stresses for the whole Y (slow) dimension. By adding an extra
dimension to thread blocks and mapping it to the grid Y dimension, we increase the number
of thread blocks created maximising the GPU utilisation.

Shared Memory. In Volta architecture it is possible to set up the scratchpad memory in each
SM as 128 kB of cache (hardware managed) or 96 KB shared (software managed, thread
block-addressable) memory. By placing some common data in this memory, it is possible
to enhance reuse while maximising the memory throughput per thread.

Register Streaming. The concept of traversing the data volume in the slowest dimension can
be used. By doing this, it is possible to keep the slowest dimension values in a set of
registers and load only one value between iterations in the traverse direction. In our case,
this is useful for the Y dimension. This approach is similar to that used by [13], with some
differences to take into account: our algorithm is FSG whereas theirs is Simply Staggered
Grid (SSG) (and thus, they consider a smaller number of variables), and they use a spacial
order of 4 whereas ours is 8, which raises the number of registers required in the kernel.

Shuffle Instructions. Efficient data exchange between threads within the same warp can be
achieved by using shuffle instructions. Also, a shuffle instruction is faster than shared
memory since it only requires one instruction versus three for shared memory (write, syn-
chronise, read). Shuffle instructions can be used to exchange data between threads within
the same warp when computing stencils in Z (fast) dimension.

Results The proposed optimisations were implemented and evaluated for a computational grid
built using FSG cells. Table 4 shows the environment used for the evaluation. Figure 6 depicts
the achieved throughput on Volta architecture for all the proposed optimisations and the two
different stages of the algorithm, the velocities and the stresses update, as well as the aggregated
(denoted as global) throughput. The metric used is millions of cells per second (MCell/s). This
is a typical throughput metric used for finite-difference kernels. It reports the rate at which the
code can compute the required stencil formulas for each cell of the grid. MCell/s is an objective
value that measures the actual performance of the problem independently of the architecture.
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System 4 × GPU NVIDIA Tesla V100-SXM2 with 16GB HBM2
Compiler NVIDIA CUDA Compiler 9.1.85
CUDA FLAGS -gencode arch=compute 35,code=[sm 35,sm 37] -gencode arch=compute 50,

code=sm 52 -gencode arch=compute 70,code=[sm 70]
Grid Size 128× 128× 128

Table 4: Evaluation environment specifications
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Figure 6: FSG wave propagator throughput on one NVIDIA Volta V100 GPU.

The optimisations were enabled independently; thus the figures show the isolated effect of each
optimisation. Besides, the achieved throughput enabling all optimisations at the same time is
reported as All.

For additional reference, Figure 7 includes the performance of the same algorithm when opti-
mised for the first and second generation Intel R©Xeon Phi

TM
processors (denoted in the Figure knc

and knl respectively), as well as the performance obtained in the third and fourth iteration of the
MareNostrum supercomputer (denoted snb and skx respectively). The performance achieved in
the host processor, a dual socket IBM Power9 8335-GTG @ 3.00GHz with 20 cores, where Voltas
GPU cards are attached is also reported as p9. It is worth mentioning that no effort has been
put to optimise the algorithm for this last architecture.

4.3. Summary and Outlook

We have shown a set of optimisations, applied to a Finite Difference Numerical method solving
elastic wave propagation equations with support arbitrary anisotropy on NVIDIA Volta GPUs.
The evaluated set of optimisations ranges from memory to compute optimisations. Our fully
optimised code shows a speed-up of about 2× when compared with an unoptimized version.
Furthermore, we obtain a speed-up of about 3.5× when compared with older accelerators like
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Figure 7: Throughput architecture comparison.

Intel Xeon Phi, and more than 5× when compared to state of the art HPC processors like Intel
Xeon Scalable.

16



5. DualSPHysics

DualSPHysics (https://dual.sphysics.org/) is a hardware accelerated Smoothed Particle Hy-
drodynamics code developed to solve free-surface flow problems. The code is developed to study
free-surface flow phenomena where Eulerian methods can be difficult to apply, such as waves or
impact of dam-breaks on off-shore structures. DualSPHysics is a set of C++, CUDA and Java
codes designed to deal with real-life engineering problems.

DualSPHysics is an open-source code developed and released under the terms of GNU General
Public License (GPLv3). Along with the source code, a complete documentation that makes easy
the compilation and execution of the source files is also distributed. The code has been shown to
be efficient and reliable. The parallel power computing of Graphics Computing Units (GPUs) is
used to accelerate DualSPHysics by up to two orders of magnitude compared to the performance
of the serial version.

5.1. The Black Hole (BH) Oil Reservoir simulation code.

ENERXICO is developing a computer code called Black Hole (or BH code) for the numerical
simulation of oil reservoirs, based on the numerical technique known as Smoothed Particle Hy-
drodynamics or SPH. This new code is an extension of the DualSPHysics code and is the first
SPH based code that has been developed for the numerical simulation of oil reservoirs and has
important benefits versus commercial codes based on other numerical techniques.

The BH code is a large-scale massively parallel reservoir simulator capable of performing sim-
ulations with billions of “particles” or fluid elements that represents the system under study. It
contains improved multi-physics modules that automatically combine the effects of interrelated
physical and chemical phenomena to accurately simulate in-situ recovery processes. This leads
to the development of a graphical user interface multiple-platform application for code execution
and visualisation, and for carrying out simulations with data provided by industrial partners and
performing comparisons with available commercial packages. Furthermore, a large effort is being
made to simplify the process of setting up the input for reservoir simulations from exploration
data by means of a workflow fully integrated in our industrial partners’ software environment.

An oil reservoir is composed of a porous medium with a multiphase fluid made of oil, gas, rock
and other solids. The aim of the code is to simulate fluid flow in a porous medium, as well as
the behaviour of the system at different pressures and temperatures. The tool should allow the
reduction of uncertainties in the predictions that are carried out.

An oil reservoir system is very complex and a high resolution realistic simulation requires the
use of up to one to ten thousand million particles. In one GPU we can simulate up to 200 millions
particles, so a simulation with say one thousand million particles require the use of at least five
GPUs or more depending upon the amount of particles that we load per GPU. An important part
of this work is to produce a multi-GPU version of both the DualSPHysics and BH code that will
allow us to perform high resolution simulations and to be prepared for the exascale technology.
In section 5.3 we describe the initial stages towards this goal.

5.2. POP CoE Performance Analysis

The single-GPU version of DualSPHysics was analysed as part of the parallel application per-
formance assessment (Audit) service by the POP Centre of Excellence. Due to a delayed start
of the “Mexican half” of the ENERXICO project, the POP Audit for DualSPHysics could only
partly be provided in Deliverable 1.1 (as had been planned in the proposal). The audit has been
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finished in the meantime and results are reported in the remainder of this section – see also the
respective POP report that is added in the appendix.

5.2.1. DualSPHysics Test Cases

The test case is a very typical case in the Smoothed Particle Hydrodynamics (SPH) method that
represents a Dam Break hitting a structure and that is frequently applied to compare performance.
The test case was analysed for two numbers of particles and physics complexity doing a total
of four different experiments. The number of particles selected are 500k and 2M; the physics
complexity is denoted as Sp for the simplest physics and Cx with more complex physics. In this
application, the simulation time depends mainly on the number of particles, the physical time to
simulate and the physics applied.

Experiments were executed in the CTE-POWER HPC system at the Barcelona Supercomput-
ing Center. The technical description of a compute node is as follows:

• Platform: CTE-POWER

• 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total
160 threads per node)

• 512GB of main memory

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2

• Software: cuda-9.1+gcc-6.4.0

5.2.2. DualSPHysics Parallel Efficiency

In the POP CoE, the parallel efficiency measures the parallel runtime impact on total execution
time and this is composed by two sub-metrics – load balance and communication efficiency. Load
balance is focused on the useful computation time per parallel task and the communication in
the overhead produced by parallel runtime. In this case, the communication efficiency is related
to operations like Scheduling/forkJoin and memory transfer (i.e. memcpy).

Table 5: Single GPU Parallel Efficiency for DualSPHysics

Sp Cx
Efficiencies 500k 2M 500k 2M
Parallel efficiency 35.89% 46.98% 38.15% 47.63%

Load balance 70.88% 59.73% 65.49% 56.82%
Communication efficiency 50.64% 78.66% 58.25% 83.82%

This DualSPHysics version is at tracing level a parallel application with two parallel tasks. One
task in the host and another in the GPU device. Therefore the efficiency metrics are measured as
a work done by two parallel tasks. The parallel degree at CUDA level is done by using 3,196 grids
and 128 blocks for the 500k cases and 13,745 grids and 128 blocks for the 2M cases. The number
of GPU threads for 500k is 409,088 and 1,759,360 for 2M case, both for Sp and Cx complexity
physic. However, the individual behaviour of GPU threads are not traced by the tool used in
this Audit, but the whole behaviour on a GPU device is traced as a timeline for a parallel task.

Table 5 shows the efficiencies for the four cases analysed. As can be seen in Table 5, the
load balance efficiency decreases from 500k to 2M for the Sp cases, because most computational
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(a) Running computation (blue) and memory transfer (magenta) states.

(b) Transfer size for CUDA memcpy API. The green-blue scale bar at the bottom depicts the
transfer size in bytes.

(c) CUDA Kernels. Brown colour corresponds to the KerInteractionForcesFluid kernel.

Figure 8: A paraver trace chop for Cx 2M case. First timeline in each plot corresponds to task
in the host and second timeline to the task in GPU device.

work is done at GPU level rather than in the host. Opposite behaviour can be observed for
communication efficiency, because the time percentage for the memory transfer operations has
less weight on 2M cases despite the absolute time increases about the 500k cases. Analysing the
whole parallel efficiency, the values reported are low that is mainly related with memory transfer
operations.

5.2.3. Analysing CUDA API and Kernels

To identify the source of the poor efficiency reported in Table 5 a deeper analysis is done at
CUDA kernels level and CUDA API. To do this, the paraver traces are analysed for the four
cases. A paraver trace chop for 2M particles for Cx case is shown in Figure 8. As can be seen in
Figure 8a, most of time the host task is doing memory transfer operations (in magenta colour)
in small sizes of 4 bytes ( green colour in Figure 8b) for the KerInteractionForcesFluid kernel
(olive colour in Figure 8c), this behaviour is also observed for the others cases.

Table 6 shows the time percentage that the KerInteractionForcesFluid kernel represents in
the kernels total time for the four cases. It can be observed that the number of particles has
more impact on the percentage than the physic complexity and it is representing more than 70%
about the all kernels total time.

Memory transfer time is mainly related with the CUDA API cudaMemcpy, in Table 7 the time
percentage and count of calls are shown for the four cases. Over this percentage, the cudaMemcpy

calls done from the host to the device during the running of KerInteractionForcesFluid kernel
is around the 70% in the analysed cases.
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Table 6: Timing and Calls for the KerInteractionForcesFluid kernel

Case Time(%) Time Calls Avg Min Max
5bSp 0500k 75.53% 47.40s 21,436 2.21ms 2.13ms 2.53ms
5bSp 2000k 83.14% 339.38s 35,461 9.57ms 9.22ms 10.90ms
5bCx 0500k 79.60% 211.73s 64,188 3.30ms 3.13ms 3.94ms
5bCx 2000k 85.58% 1.6e+03s 111,092 14.30ms 13.87ms 16.67ms

Table 7: Timing for the API cudaMemcpy

Case Time(%) Time Calls Avg Min Max
5bSp 0500k 60.13% 53.98s 128,631 419.62us 18.42us 4.56ms
5bSp 2000k 75.92% 361.11s 212,781 1.70ms 17.38us 22.51ms
5bCx 0500k 60.03% 235.00s 449,330 523.00us 17.67us 110.32ms
5bCx 2000k 80.69% 1.7e+03s 777,658 2.17ms 17.22us 64.39ms

5.2.4. Identified Performance Issues

By analysing the obtained results, two main issues can be considered to improve the performance.
On the one hand, the most logical step is to increase the parallelism degree by implementing
a Multi-GPU version. On the other hand, a more complex analysis is required for the Ker-

InteractionForcesFluid kernel that seems require a refactoring to increase the data transfer
size between the host and the GPU devices. The impact of this kernel on the performance possibly
could be reduced by using a Multi-GPU version without doing a refactoring of such kernel.
However, the performance improvement can be greater by optimising the kernel implementation.
The problem with this kernel is that each particle has to evaluate which surrounding particles are
close enough and then calculate the interaction with each of them. This implies the use of several
nested loops and divergence between the threads, because each thread calculates the values for a
particle, but each particle interacts with different neighbouring particles and different numbers.
This also leads to irregular memory access patterns and this requires a high volume of records
that reduces the percentage of occupancy.

5.2.5. Summary of the POP audit

In the final POP report (see apendix), the key findings were summarised as follows:

• The kernel KerInteractionForcesFluid represents more than 70% of the total kernels execu-
tion time.

• The kernel KerInteractionForcesFluid has more impact on the execution time in the four
cases, due to the small data copied by memcpy API. This behaviour is similar for simple
and complex physic cases.

• Computation time is less than 50 % of the total runtime for the four cases.

• CUDA memcpy is representing around the 60% of the execution time that is produced by
the the kernel KerInteractionForcesFluid.

• Application’s Kernel needs an additional refactoring to increase the degree of parallelism,
it could be an Multi-GPU or explicit Streams programming.
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5.3. Multi-GPU implementation of DualSPHysics: advances and implementation
difficulties

The first multi-GPU approach of DualSPHysics was tested in the BSC (Barcelona Supercom-
puting Center BSC-CNS) in 2012 and the results were published in Domı́nguez et al. [3]. This
multi-GPU version combines CUDA and MPI, where each MPI process handles one GPU. The
division of the domain is done in one direction; therefore, each process usually only has to commu-
nicate with one or two neighbouring processes. The communication between processes is carried
out through asynchronous sending of messages and synchronous reception to overlap communica-
tion and calculation times. In addition, it includes a dynamic load balancing to redistribute the
particles after some time steps and minimise the synchronisation times between MPI processes.
A more detailed description of the implementation and its results can be found in Domı́nguez et
al. [2]. In 2013 an improved version was developed where CUDA streams, pinned memory and
asynchronous transfers between CPU and GPU memory was used to improve the overlapping
between communication and calculation times. This version was also tested in the BSC and
the results were presented in the 8th International SPHERIC Workshop. The latest version im-
proved the efficiency results of the previous version which were already very good. An efficiency
close to 100% was achieved simulating 8 million particles per GPU on 128 GPUs Tesla M2090
of the MinoTauro GPU cluster of the BSC. The new efficiency tests are done in the CTE IBM
Power9 cluster of the BSC. This cluster hosts 4 GPUs Tesla V100 per computation node. The
software used in the tests carried out in the MinoTauro machine (see original specifications in
Domı́nguez et al., [2]) is not available, so the improved multi-GPU version is compiled with the
new software available in CTE-POWER cluster (CUDA 9.2, GCC 6.4.0 and Open MPI v3.0.0).
Several problems were found when repeating the efficiency test in this cluster using the current
software. Some code used for block size optimisation to run the CUDA kernels is not compatible
with the new version of CUDA, so some changes had to be done to remove this code. The most
important problem was that many simulations failed for different reasons and at different times.
After considerable time and effort, it was found that the problem was in the communication
with MPI. One MPI process sent some data, but the destination process received other data.
This problem has already been discussed in some forums. There is some incompatibility between
the use of pinned memory and MPI when this pinned memory allocated by CUDA is used in
asynchronous message sending. The code was updated to detect this specific problem and also
to avoid it. Finally, the corrected version was used to test the efficiency in the CTE-POWER
cluster without any further failure. The efficiency test (weak scaling) was done up to 64 GPUs
(the maximum allowed by the user account) simulating 4, 8 and 16 million particles per GPU.
An efficiency of 91 % was achieved by simulating 8 and 16 million particles per GPU and 85% by
simulating 4 million particles per GPU on 64 GPUs Tesla V100. The efficiency obtained is not
bad, but it is less than the efficiency obtained in the MinoTauro cluster. There are important
differences in software and hardware between the two efficiency tests. The most important dif-
ference is in the computational power of the GPUs Tesla V100 and Tesla M2090. The new GPU
is almost 16 times faster than old GPU simulating the same testcase with 8 million particles, so
the calculation time was drastically reduced while the communication time is similar.

21



6. ExaHyPE

The ExaHyPE engine solves systems of hyperbolic PDEs, as stemming from conservation laws.
Models for seismic wave propagation problems, as addressed in ENERXICO’s WP3 (Oil and
Gas), have been developed within the ExaHyPE project (www.exahype.eu) and are being fur-
ther developed in the ChEESE cluster of excellence (www.cheese-coe.eu). ExaHyPE is based
on high-order Discontinuous Galerkin (DG) discretisation on tree-structured Cartesian meshes.
For non-linear problems it offers an a-posteriori Finite-Volume limiter. Parallelisation of the Exa-
HyPE engine relies on the underlying Peano framework (www.peano-framework.org) for parallel
adaptive mesh refinement. MPI is used for distributed-memory parallelism. Shared-memory par-
allelisation relies on Intel’s Threading Building Blocks (TBB). The prime model for seismic wave
propagation is based on the elastic wave equations on curvilinear meshes. It allows to simulate
problems on suitably complicated geometry (topography, curved faults, e.g.) with a substantially
reduced meshing overhead compared to approaches that work on unstructured grids.

Goals in ENERXICO ExaHyPE is a flagship code of the European Centre of Excellence ChEESE,
which hosts the majority of activities to advance performance and scalability of ExaHyPE to-
wards exascale (as for SeisSol, cmp. Section 7). In ENERXICO, we therefore focus on prototyping
performance improvements for novel use cases of ExaHyPE in the context of WP3 (Oil and Gas),
in particular towards inverse problems (Bayesian inversion) and uncertainty quantification. Ad-
ditional activities towards “exascale enabling” (i.e., WP1) focused on collaboration opportunities
within the consortium (TUM, BULL/ATOS, ...).

The following table summarises the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

TUM 3

Bull/ATOS 4

6.1. Performance and Scalability Assessment

A POP audit for ExaHyPE has been attempted as part of the ChEESE CoE, before the start
of ENERXICO. However, due to limited support of the POP toolset for Intel TBB, it was not
possible to obtain audit results. We therefore did not attempt another POP audit in ENERX-
ICO, but relied on performance assessments and findings identified in the ExaHyPE project. In
addition, ATOS did a performance and scalability assessment in the first half of the ENERXICO
project (cf. Deliverable 1.1).

Issues known since the start of the project:

• MPI Scaling: ExaHyPE relies on tree-structured grids and assigns subtrees to MPI ranks.
This approach follows the Peano framework’s original orientation towards multi-level and
multi-grid problems. The subtree approach leads to a very coarse-grain load balancing,
such that optimal scaling is only achieved at certain “sweet spots“: the number of ranks
should be related to powers of 3d, where d is the spatial dimension.

• TBB Scaling: TBB scaling depends strongly on the arithmetic intensity of the underlying
models. For the linear elasticity model used in ENERXICO, scaling on Skylake nodes, e
.g., drops significantly after 14 cores. These scaling limits result from a mixture of NUMA
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effects, overheads of the task-based parallelisation approach and impact of sequential exe-
cution of the tree-oriented mesh traversals. The default strategy is therefore to work with
multiple ranks per compute node.

Issues identified by ATOS during tests from D1.1

• Cache Stalls: A significant proportion of cycles (≈32 %) are spent on data fetches from
cache. The strategies adopted in the applications (data alignments ...) do not seem to
work optimally. Such issues are related to intra-node parallelisation and therefore, the data
sharing should be investigated in depth.

• MPI Time: The MPI time is high and represents almost 31% of the elapsed time. It is
highly used by the MPI function “Iprobe” which is a non-blocking test for messages. Such
problem may be caused by a non-optimal communication schema. On the other hand, it
is shown that there is no MPI imbalance issue. Here, a dedicated rank is in charge of
performing the load balance. Therefore, a big portion of time is spent in synchronisations.

• Vectorisation: A significant fraction of floating-point arithmetic instructions ( 93 %) are
scalar and do not benefit from the advanced vectorisation capabilities of the processor.
Only a small portion of the code is vectorised (≈7%) using AVX512 instruction set. This
is due to the generic kernels employed in this test. In the optimized kernels a very high
vectorisation level is reached.

Of these issues some arise only when using the generic (non-optimised) kernel variants of Exa-
HyPE. The issues regarding cache-stalls and vectorisation have been resolved in the ChEESE-CoE
for the linear applications of ExaHyPE.

Benchmarking ATOS has used Intel’s advisor to benchmark ExaHyPE and to ensure compa-
rability of the results we will continue to use Intel Advisor to measure, e.g. vectorisation levels.

For MPI scaling we use internal tools to measure run-times.

6.2. Improvements to Performance and Scalability

Port to Peano4 The issue with MPI scaling only being available at certain “sweet spots”
is caused by the underlying AMR framework Peano, which follows a tree-oriented scheduling of
subgrids with the tree-structured adaptive Cartesian meshes, which may lead to large granularity
of partitions. The new version Peano4 is developed by the group of Tobias Weinzierl at Durham
University and should become available during the project period. It is designed to at least
partially resolves these issues. We are therefore, in collaboration with Durham, rewriting the
necessary interfaces in ExaHyPE to use Peano4. Initially we have focused on the Euler equations
and low-order discretisations. As Peano4 develops further, we will enable more of ExaHyPE’s
features. While we do not see a speedup for the current sweet spots of the code by moving to
Peano4, we see a considerable improvement away from the sweet spots.

Multiple runs for UQ ExaHyPE features a multi-solver interface that can be used to combine
multiple solves on overlapping or non-overlapping meshes, also including different discretisation
orders or even different PDEs. We will implement a multi-solver variant of our Multi-Level
Markov-Chain Monte Carlo (MLMCMC) algorithm and intend to use ExaHyPE’s multi-solver
feature to improve overall runtime. The multi-solver interface will allow us to solve on every level
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simultaneously. In very small test setups, we see that ExaHyPE’s performance has reached the
strong-scaling limit, by grouping multiple runs into one, we can avoid this and gain a speedup.
The MLMCMC tests in ExaHyPE are in very early stages and considerable performance im-
provements are expected.

Prototyping low and mixed precision in ExaHyPE For inverse problems and UQ scenarios,
it is often sufficient to execute entire simulations or at least certain performance-critical kernels
in lower precision. We therefore examined the potential of exploiting low or mixed precision in
ExaHyPE. We prototypically implemented a mixed-precision ADER-DG scheme that computes
the element-local space-time predictor in single precision, but keeps double precision for the
remaining calculation. We observed speedups of up to 60% for the space-time-predictor kernel,
which for the not fully compute-bound elastic wave propagation scheme improved time-to-solution
by roughly 30%. However, we also found that extending the prototype to a proper integration
of mixed precision in the engine would require extensive changes in the ExaHyPE Toolkit and
Kernel Generator, which is not feasible with the resources available in ENERXICO. Massive work
would particularly be required in the algorithm layer, which is hard-coded in double precision and
implements the ADER-DG scheme on the tree-structured adaptive grids provided by the Peano
framework. Similar effort would be required for allowing to switch the general target precision
between single and double precision.

Testing GEMM backends in ExaHyPE Many of ExaHyPE’s element-local kernels are tensor
operations, which can be computed as sequences of loops over matrix multiplications (“loop over
gemm”). For best-possible performance of these small, fixed-size matrix multiplications, we rely
on the LIBXSMM library [8] on Intel architectures. We updated the ExaHyPE Kernel Generator
to also use the Eigen library (http://eigen.tuxfamily.org/) as matrix multiplication backend,
which has previously shown promising results with SeisSol on ARM architectures. However, tests
on the Intel Haswell architecture revealed that Eigen did not lead to performance advantages
compared to a generic loop-based implementations. We will evaluate the issue more closely
also on other architectures, but assume that the comparably small matrix sizes for the seismic
use cases in ExaHyPE are already efficiently captured by a generic loop-based implementation.
Still, the integration of the Eigen library has prepared the Kernel Generator for including other
small-GEMM backends, which might be specialised for architecture like ARM, RISC V or similar.

Testing of ExaHyPE on the AMD Zen2 architecture Tests on the AMD zen2 architecture have
been performed using the ExaHyPE version which implements several types of GEMM backends.
The “generic” GEMM backend uses non-optimised kernels. The“optimised” GEMM backend
used the vectorised XSMM library. the latter is compiled targeting the AVX2 instruction set.
The “optimised” backend can be combined with two other features: ”split ck” which allows a
better utilisation of the cache and ”vectorise terms” which enables aggressive vectorisation.

The test case used is a high order discontinuous Galerkin solver for elastic wave equation
using a curvilinear mesh as it is described in appendix A.1. We simulate 100 time steps of the
benchmark and measure MPI and TBB strong scaling. Following the recommendations of the
POP audit, order 7 is used as because of its best performance.

In Figure 9, the strong scaling analysis is performed for both shared memory parallelisation
though TBB and distributed memory with MPI. Peano’s geometrical domain-decomposition has
load balancing sweet-spots at 2, 28 and 731 ranks. The best scaling is obtained via hybrid
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(MPI+TBB) parallelism by exploit MPI sweet spots and increasing the number of TBB threads
per MPI rank.

(a) TBB strong scaling with 2 MPI tasks (b) TBB strong scaling with 28 MPI tasks

(c) TBB strong scaling with 731 MPI tasks (d) MPI strong scaling using 2 TBB threads

Figure 9: TBB and MPI strong scaling curves for ExaHyPE. The optimised LIBXSMM backend
is used. The elapsed time is plotted using a logarithmic scale.

In Figure 9a, Figure 9b and Figure 9c, the number of TBB threads is increased starting from
2 to 64 TBB threads for each MPI sweet sport 2, 28 and 731. In figure Figure 9d, an MPI strong
scaling is presented. In the latter, two TBB threads are used.

These results are in agreement with previous audits performed on ExaHyPE on Intel Skylake
processors.

Figure 10: Performance comparison for generic and several level of optimisation in ExaHyPE.
The tests are performed using 28 MPI tasks and the number of TBB threads varies
from 2 to 16. The elapsed time is plotted using a logarithmic scale.
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ExaHyPE shows great performance when using optimised kernels. The shared memory scala-
bility is however limited when the number of threads reaches 16.

6.3. Summary and Outlook

The ExaHyPE application has been successfully ported to the new AMD Rome architecture.
The use of different backends, namely generic and several levels of optimised backend using
LIBXSMM, has proven to be a good design decision as it is easy to switch to a new architecture.
All further activities, especially the port to Peano 4, will be continued in the remaining project
period, so we refer to the next Deliverable 1.3.
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7. SeisSol

SeisSol is a software package for simulating seismic wave propagation and earthquake dynamics
based on the discontinuous Galerkin method with arbitrary high-order derivative time-stepping
(ADER-DG). Characteristics of the SeisSol simulation software are:

• use of arbitrarily high approximation order in time and space (ADER-DG with Godunov
flux formulation) with the option for cluster-wise local time stepping.

• use of tetrahedral meshes to approximate complex 3D model geometries (faults & topogra-
phy) for rapid model generation.

• use of elastic, anisotropic, viscoelastic and viscoplastic material to approximate realistic
geological subsurface properties.

• parallel geo-information input (ASAGI).

Goals in ENERXICO SeisSol is a flagship code of the European Centre of Excellence ChEESE
(www.cheese-coe.eu), which hosts the majority of activities to advance performance and scal-
ability of SeisSol towards exascale (including particularly a port to GPU architectures). In EN-
ERXICO, we therefore put a stronger focus on enabling novel use cases of SeisSol in the context
of WP3 (Oil and Gas), which contains the extension towards further material models (anisotropic
and poroelastic materials) and towards inverse problems. Additional activities towards “exascale
enabling” (i.e., WP1) focused on collaboration opportunities within the consortium.

The following table summarizes the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

TUM 3

Bull/ATOS 4

7.1. Performance and Scalability Assessment

SeisSol scales up to beyond-petascale supercomputers: extreme-scale simulations have been per-
formed on several of the world’s largest supercomputers in the past, for example on Tianhe-2
(8000 nodes accelerated by Intel’s Xeon Phi co-processor; achieved 8.6 PetaFlop/s in double pre-
cision [7]) or on Cori (6144 nodes Xeon Phi “Knights Landing” CPUs; ≈ 6 PetaFlop/s in double
precision, follow-up work to [16]).

In terms of single-core performance, the optimisation of SeisSol has been strongly oriented
towards Intel architectures (Knights Corner/Landing; recently Skylake). The MPI+OpenMP
strategy strived to rely on a single MPI rank per node to reduce the stress on MPI parallelism.
A key algorithmic challenge to scalability is SeisSol’s cluster-wise local time stepping, for which
elements with a similar time step bound1 are merged into cluster’s, which are propagated in a
multi-rate fashion. In the strong-scaling limit, small sizes of such clusters impede shared- and
distributed-memory scalability. However, local time stepping is crucial for many scenarios that
feature strong adaptive mesh refinement and/or highly complicated geometries and typically
leads to strongly improved time-to-solution compared to global time stepping, despite losses in
parallel efficiency.

1from the Courant-Friedrich-Levy condition
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As part of the project, we had registered for an “extreme scaling workshop” at Leibniz Su-
percomputing Centre, for which full-machine runs on the SuperMUC-NG supercomputer (Intel
Skylake CPUs, 26.8 PetaFlop/s theoretical peak) were envisaged. This workshop has been post-
poned to October 2020 due to the COVID-19 outbreak.

7.2. Improvements to Performance and Scalability

7.2.1. Optimise SeisSol for non-Intel architectures

Since AMD architectures are becoming more important (see, e.g., recent installations such as
Hawk at HLRS Stuttgart, Mahti at CSC Finland or El Capitan at Lawrence Livermore), we
evaluated SeisSol on these architectures.

Hardware description The technical analysis and experiments made for the application Seis-
Sol, were executed by the applicative experts from the Atos Center of Excellence for Performance
Programming (CEPP) team. The SeisSol application has been run on ATOS on-premise super-
computers. The specifics of these supercomputers are described in Figure 11.

Figure 11: Description of ATOS supercomputers.

Software environment and test case description The SeisSol version used is the latest devel-
opment version available in the master branch on the SeisSol Github. We used the community
benchmark SCEC TPV13 [6] to compare different setups. The mesh consisted of 52 million
elements. Computations have been run with convergence order 6. This test case describes a
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spontaneous rupture on a 60-degree dipping normal fault in a homogeneous half-space (see Fig-
ure 12). A further detailed description of the test case is given in the reference document of

Figure 12: Diagram of the geometry of TPV13. 60-degree dipping normal fault.

SeisSol (https://seissol.readthedocs.io/en/latest/tpv13.html). An in-detail description
of how we compiled and run SeisSol can be found in appendix A.2.

Testing backends for Matrix Matrix multiplications (GEMM) SeisSol uses the code generator
YATeTo [15] for high-performance implementation of element-local operations. YATeTo allows
expressing element-local operations on small tensors via a DSL, and maps these tensor operations
to backends which perform Generalised Matrix Matrix multiplications (GEMM). For Haswell we
use libxsmm (https://github.com/hfp/libxsmm) and for Skylake a combination of libxsmm
and PSpaMM (https://github.com/peterwauligmann/PSpaMM).

We evaluated several code generator libraries for their suitability for AMD architectures.
As a target platform we used the cluster Spartan, which is located at ATOS. The AMD section

of the cluster consists of 224 nodes each equipped with two AMD Rome EPYC 7742 with 128
cores/node as it is described in Figure 11.

The AMD Rome processors implement the Zen2 microarchitecture, which is similar to Intel’s
Haswell architecture. Hence the code generator libxsmm is a natural candidate for the Zen2 archi-
tecture. In addition we used the linear algebra library Eigen3 (eigen.tuxfamily.org/) as back-
end and Intel’s MKL (https://software.intel.com/content/www/us/en/develop/tools/math-
kernel-library.html).

Considering the backends for small matrix matrix multiplications, we identify libxsmm to be
superior over the other candidates. Although libxsmm targets Intel architectures, we see that
libxsmm configured for Haswell achieves good intra node performance on AMD Zen2 architecture.
As PSpaMM makes use of AVX-512 instructions, it is not beneficial to combine it with libxsmm on
the AMD Zen2 microarchitecture. Intel’s MKL library is targeted at Intel architectures, but can
also be compiled for AMD targeting AVX2 instruction set. It is known that Intel MKL performs
bad on non Intel architectures. We just included it for the sake of completeness. Although we
had considerable success with Eigen3 on ARM architectures, it did not live up to its expectations
on AMD.

In Figure 13, for each backend, all 128 cores of one node are used. The number of MPI tasks
and OMP threads vary such that all cores are used. For each run, 64 nodes are used.

Remark. Time metric: The relevant execution time is mentioned in the log file at the line
containing the string “Elapsed time (via clock gettime):”.
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(a) Communication thread enabled

(b) Communication thread disabled

Figure 13: Comparison of the Eigen, MKL, XSMM, PSPaMM and XSMM,PSpaMM backends
on 64 nodes runs. Labels on top of the bars denote the elapsed time in seconds.

7.2.2. Evaluation of NUMA-aware MPI+OpenMP parallelisation

The MPI+OpenMP parallelisation has so far strongly focused on a “one MPI rank per node”
strategy, as this had clear advantages for the Intel Knights Corner/Landing manycore architec-
tures (which did not show strong NUMA effects). Also the high arithmetic intensity of SeisSol’s
ADER-DG has not led to considerable NUMA effects on Intel’s Haswell architecture (on Super-
MUC, e.g.). In ENERXICO, we reexamined NUMA effects on recent architectures (esp. including
AMD) and found stronger NUMA effects, which is partly due to architectures with a more pro-
nounced NUMA architecture and due to a general shift of requiring more and more flops per byte
to stay compute-bound.

Evaluation of NUMA effects on the AMD Zen2 architecture In Figure 13, we see a compar-
ison of the overall runtime for different setups. With the communication thread enabled, we find
an optimal runtime at 16 MPI ranks per node and 8 OMP thread per MPI rank and libxsmm
as a backend. This can be explained by the strong NUMA effects we find on the Zen2 microar-
chitecture. The node topology of the Spartan cluster is given in Table 8. For flux computations,
SeisSol needs to access data for a cell and all its neighbours. As cells are not locally ordered this
requires memory access through across NUMA domain boundaries.
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node 0 1 2 3 4 5 6 7

0 10 12 12 12 32 32 32 32
1 12 10 12 12 32 32 32 32
2 12 12 10 12 32 32 32 32
3 12 12 12 10 32 32 32 32
4 32 32 32 32 10 12 12 12
5 32 32 32 32 12 10 12 12
6 32 32 32 32 12 12 10 12
7 32 32 32 32 12 12 12 10

Table 8: Distances between the different NUMA domains as given by numactl -H on the Spartan
Cluster.

Although in past studies a communication thread has been proven to achieve better results
than a communication pattern where communication and computation are intertwined, we see
a different behaviour here. The best setup is found with four MPI tasks per node, libxsmm
and PSpaMM combined and the communication thread disabled. This can be explained as
follows: When we use one communication thread per node we just dedicate about 0.8% of the
computational resources to communication. Due to the NUMA effects, we have to use more MPI
tasks per node. But having more MPI tasks per node, each equipped with one communication
thread by themselves, means we lose more processors to communication.

Consequently for production runs, where also I/O plays a bigger role, there is now a higher
need to tune the number of MPI tasks per node and evaluate whether the communication thread
is beneficial or not.

Comparing the baseline (Communication thread enabled, libxsmm as backend and one rank
per node) with the new found optimum (Communication thread disabled, libxsmm, PSpaMM as
backend and 4 MPI tasks per node) we achieve a speedup of ≈ 26%.

Evaluation of NUMA effects on the Intel Skylake architecture After such promising results
on AMD, we redid the same experiment on SuperMUC-NG. Here we ran the simulation on 792
compute nodes, which is one eighth of the total of SuperMUC-NG. Each node of SuperMUC-NG
is equipped with two Intel Xeon Platinum 8174 processors and 96 GB RAM. The interconnect is
an Intel Omnipath at 100 GB/s.

In Figure 14, we see that we also benefit from several MPI ranks per compute node. Here
the communication thread still plays out its benefits as with two NUMA domains we do not
loose too much computational power if dedicate one thread per MPI rank to communication.
Comparing the baseline (commthread enabled, one rank per node) and the optimal configuration
(commthread enabled, 4 ranks per node) we find a speedup of ≈ 18%.

node 0 1

0 10 21
1 21 10

Table 9: Distances between the different NUMA domains as given by numactl -H on SuperMUC-
NG.
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Figure 14: Comparison of different hybrid parallelisation schemes on 792 nodes of SuperMUC-
NG.

Connection to WP3 In WP3 a code comparison study is ongoing. The aim of this study is to
compare different codes for seismic wave propagation in terms of accuracy and performance. The
results from the NUMA optimisation will be used for the production runs of the code comparison.

7.2.3. Evaluation of the computation performance on AMD Zen2 architecture

Figure 15: SeisSol calculated flops.

32



In Figure 15, SeisSol calculated flops are plotted with respect to the theoretical peak performance
and an approximated 75% HPL efficiency. The XSMM,PSpaMM backend is used. Runs are
performed using 16 OMP threads per MPI task. The number of nodes ranges from 1 to 64. In
Figure 16 we see a scaling plot of SeisSol on the Spartan cluster from 1 to 64 nodes. We observe
that SeisSol achieves around 50% of the HPL efficiency for low number of nodes. For the 64
nodes we still achieve around 30% of the HPL performance.

Using an in-house MPI profiling tool, an MPI analysis of the application SeisSol shows that
there is an average of 12% ratio of the total parallel time spent in communication and MPI I/O.
This data partly explains the difference between the calculated flops and the HPL efficiency seen
in Figure 15.

Remark. Flop metrics SeisSol outputs the hardware flops which are the flops actually calculated
by the CPU. So the HW-GFLOP can be seen as machine utilisation. This number is extracted
from the output at the line containing the string “Total calculated HW-GFLOP”. The theoretical
peak performance is calculated using the formulae described in appendix A.3.

Figure 16: MPI scalability of SeisSol with libxsmm, PSpaMM backend and communication thread
disabled. The number of nodes ranges from 32 to 200.

In Figure 16, we see a scaling plot of SeisSol on the Spartan cluster from 32 to 200 nodes. We
observe that SeisSol achieves a good speedup up to 16 OMP threads per MPI rank.

7.2.4. Performance engineering for model extension

In the scope of work package 3, SeisSol has been extended to take fully anisotropic materials
into account. The results have been published in [18]. As part of the research leading to this
publication we conducted performance measurements, which are part of work package 1. The
numerical scheme for elastic and anisotropic materials are similar, so we were able to achieve
equally good results. With around 1 TeraFlop/s per node in double precision with local time
stepping we achieve approximately a quarter of the theoretical per-node peak performance. Using
global time stepping we achieve a higher performance at the cost of increased time to solution.

7.3. Summary and Outlook

We have successfully ported SeisSol to the new AMD Rome architecture. The use of different
backends to YATeTo has proven to be a good design decision as we are able to easily switch to
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a new architecture. As a follow-up to the tests on AMD we redid the same tests on Skylake
and also found considerable performance improvements due to a NUMA aware parallelisation
strategy.

In the upcoming period of the project we will focus on the model extension to poroelastic
materials.

34



8. SEM46

SEM46 is a 3D seismic modelling and inversion code, developed mainly in the frame of the
SEISCOPE project (https://seiscope2.osug.fr) for tackling modelling and full waveform
inversion topics from the near surface to the deep crustal scale. The modelling kernel is based
on spectral elements designed on Cartesian-based hexahedral meshes. The code implements in
its current version elastic and visco-elastic equations for both modelling and inversion tasks.
The inversion part is coupled with the non-linear Optimisation toolbox of SEISCOPE (https:
//seiscope2.osug.fr/SEISCOPE-OPTIMIZATION-TOOLBOX) in order to implement efficient large-
scale non-linear optimisation schemes.

The following table summarises the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

Bull/ATOS 2

8.1. Performance and Scalability Assessment

The performance and scalability of SEM46 have been evaluated on different clusters prior the
ENERXICO project. Figure 17 shows strong-scaling tests done on different intel-based clusters
for cubic-shaped targets.

Figure 17: Strong scaling of SEM46 on different clusters prior the ENERXICO project, on
cubic reference test-case for the modelling part. Froggy/GRICAD is a Sandy-
Bridge Intel-based cluster with Infiniband network hosted at Univ. Grenoble Alpes.
Dahu/GRICAD is a Skylake Intel-based cluster with OmniPath network hosted at
Univ. Grenoble Alpes. MN4 (MareNostrum4) is a Skylake Intel-based cluster with
OmniPath network hosted at BSC
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The performance and scalability of SEM46 have also been assessed through a POP audit in
November 2019, on the MareNostrum4 cluster, with the design of 4 realistic test-cases: one
small geometry target running on 48 cores with one forward and one inversion test-cases; one
big geometry target with one forward problem running on 96 cores and one inversion problem
running on 192 cores.

This audit highlighted:

• very good parallel efficiency (larger that 94.4% for all test cases), and small unbalanced
due to work distribution

• relatively low IPC that should be looked at more carefully

• identification of useless MPI Barrier for the inversion kernel

8.2. Improvements to Performance and Scalability

The improvements of SEM46 have been focused on the test-cases designed for the POP Audit.
These test-cases specifications are detailed below

Test case name code mode physics mesh size

small forward forward modeling P4 elements elastic isotropic 54× 168× 52

small inversion gradient building P4 elements elastic isotropic 54× 168× 52

big forward forward modeling P4 elements elastic isotropic 108× 336× 104

big inversion gradient building P4 elements elastic isotropic 108× 336× 104

Analysis Using Intel VTune Amplifier, one can see in Table 10 that the two main most time con-
suming regions of the code or ”hotspots” are the functions called ”stiffness vector product deville p4”
and ”update newmark1sponge”.

Function / Call Stack Effective
time

MPI
busy
wait
time

Source file

stiffness vector pro-
duct deville p4 cart

66.5% 0 s stiffness vector product deville P4.f90

update newmark1sponge 14.30% 0 s update newmark.f90

update newmark2 8.0% 0 s update newmark.f90

apply mass matrix 4.8% 0 s apply mass matrix.f90

communicate 0.9% 0 s communicate.f90

abc clayton down 0.7% 0 s abc clayton.f90

intel avx rep memcpy 0.1% 0 s [Unknown]

pmpi sendrecv 0.1% 14.9 s sendrecvf.c

pmpi wtime 0.0% 0 s wtimef.c

abc clayton east 0.0% 0 s abc clayton.f90

abc clayton weast 0.0% 0 s abc clayton.f90

abc clayton north 0.0% 0 s abc clayton.f90

abc clayton south 0.0% 0 s abc clayton.f90

Table 10: SEM46 hotspots analysis: most active function in the application
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Stiffness Kernel optimisations We have analysed the main kernel, namely stiffness vector pro-
duct deville p4, using multiple methods:

• using Intel Advisor, we can see that vectorisation level is rather well vectorised (around
60% efficiency),

• Using a frequency stepping procedure, we can also see the performance dependency to
CPU frequency and memory bandwidth. Through this analysis, we obtained an equal split
between compute bound and memory bound, though this analysis was done on an Intel
Skylake 6130 processor (16 cores with 2.1GHz). On higher-end processors we could think
that the code would become more memory bound (the 6130 has a high memory bandwidth
with regards to its computational power).

Looking at the compiler reports, we have noticed that although the code is vectorised, the
loops are often very small, hence the overhead required to start the vectorised loop is significant
compared to the actual vectorised computation. Here the reason is that most vectorised loops
take advantage of the fact that each element in the computation has multiple integration points
and vectorisation is carried out over those points. One different strategy would be to vectorise
over multiple elements at the same time: do the same calculation for each point i on N different
elements. This requires some code modification and loop transformations but allows to substan-
tially increase the length of the vectorised loops, hence allowing to obtain a higher vectorisation
efficiency.

Another set of modifications concerns an array of tensors called Cij . This tensor is defined for
each element, and has 21 components. However, when we look at the code, we can see that only
9 components are really used, but looking further we can see, from the source code generating
this tensor in “vpvsrho2Cijkl.f90”, that 5 components are simple copies of 4 others. Furthermore,
reading the code in “vpvsrho2Cijkl.f90”, we can see that all components of the “Cij” tensor can
be generated from 2 scalar fields (vp and vs).

We can take advantage of these observations to produce multiple specialised kernels: these
kernels will use assumptions based on these observations to reduce the memory accesses within
the kernel, hence reducing the memory bound part of the kernel.

UpdateNewMark1Sponge Kernel optimisations The second major kernel ”update newmark1-
sponge”, is essentially memory bound. We have tried using streaming stores but we have not
obtained any significant improvement.

Communication optimisations We have noted that the communication scheme is based on
blocking send-receive calls. The problem with this type of communication scheme is that it
enforces an order between mpi processes to solve the communications. In practice, it generates
”waves” in the communication pattern for example, which is not optimal. We have implemented
another version based on non-blocking communication calls (isend/irecv/waitall). However on
these small test cases we have not measured any significant improvement and no performance
loss neither. To measure improvement, we would require large scale tests.

Preliminary tests and numerical validation To validate our modifications, we have introduced
an inline validation process: if a specific environment variable is set, the code will run the original
kernel, the optimised kernel and will compute the differences between their outputs. The error
is displayed as an L2 relative residual.

37



We have reported in Table 11 the some of our initial optimisation results.

Version Kernel time Application time Kernel im-
provement

Application
improvement

Original 11.81 14.35 0% 0%

OPT1 : vectorisation
other elements

10.26 12.85 13% 5%

OPT2: specialised ker-
nels using Cij

9.32 11.82 21% 24%

Table 11: SEM46 kernels optimisations results

We have further introduced similar optimisations for the backward step (kernel stiffness vec-
tor product deville P4 inversion single field). To enable or disable these optimisations, we have
introduced four environment variables:

• Forward kernel (stiffness vector deville p4 cart)

– BULL STIFF FORWARD OPT=X

∗ X = 0 → Reference kernel (no optimisation) (default value)

∗ X = 1 → Optimisation level 1 (gather elements, vectorisation of computations
over multiple elements, scatter results, uses most generic Cij tensor)

∗ X = 2→ Optimisation level 1 + using the fact that only 4 components of the Cij

tensor are required,

∗ X = 3 → Optimisation level 1 + using the fact that the required Cij tensor
components can be generated from two fields (VP and VS),

– BULL STIFF FORWARD CHECK=X

∗ X = 0 → Numerical validation disabled(default value)

∗ X = 1 → Numerical validation enabled: executes reference kernel and chosen
optimised kernel, displays the L2 relative residual.

• Backward kernel (stiffness vector product deville P4 inversion single field)

– BULL KU DEVILLE P4 CART INVERSION OPT=x

∗ X = 0 → Reference kernel (no optimisation) (default value)

∗ X = 1 → Optimisation level 1 (gather elements, vectorisation of computations
over multiple elements, scatter results, uses most generic Cij tensor)

∗ X = 2 → Optimisation level 1 + using fact that only 4 components of the Cij

tensor are required,

∗ X = 3 → Optimisation level 1 + using the fact that the required Cij tensor
components can be generated from two fields (VP and VS),

– BULL KU DEVILLE P4 CART INVERSION CHECK=x

∗ X = 0 → Numerical validation disabled (default value)

∗ X = 1 → Numerical validation enabled: executes reference kernel and chosen
optimised kernel, displays the L2 relative residual.
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8.3. Summary and Outlook

SEM46 is a powerfull application which enables to perform seismic modelling and inversion using
various approximations, particularly the isotropic and anisotropic approximations. Therefore,
the work that has been carried out in WP1 of ENERXICO takes into account this flexibility of
SEM46.

Considering the isotropic test case which has been used for the POP audit, basic optimisation
issues were identified for this particular setup. The vectorisation enablings and an improved
memory management allowed to achieve an 24% gain in the overall walltime.

Enabling and disabling each of these optimisations can be done using an environment variable
setup to easily switch from one version of the code to another.

The next steps are to consider first the anisotropic approximation test case. The above opti-
misation principles shall be applied in this framework. Then, a large scale test case shall be used
to measure the gain of the communication optimisations.
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9. WRF

WRF is a mesoscale numerical weather prediction system designed for both atmospheric research
and operational forecasting applications. It features two dynamical cores, a data assimilation
system, and a software architecture supporting parallel computation and system extensibility.
For researchers, WRF can produce simulations based on actual atmospheric conditions (i.e.,
from observations and analyses) or idealized conditions. WRF offers operational forecasting,
a flexible and computationally efficient platform, while reflecting recent advances in physics,
numeric, and data assimilation. It is continuously contributed by developers from the expansive
research community.

Role of WRF in ENERXICO WRF is providing excellent results from the physics point of view
to many research groups around the world. However, as its scalability is far from being ideal, it
is not generally considered as a target code for exascale machines, even though many researchers
perform WRF simulations nowadays on pre-exascale computers. WRF is of vital importance for
ENERXICO’s WP2, where it has produced remarkable results for the simulation of wind energy
fields. This motivates to analyse and improve the scalability and performance of the the WRF
version used for WP2 in ENERXICO. See section 9.2 for further details about the WRF modules
used.

The following table summarises the effort (in person months, PM) spent on WP1 until Month
16 of the project:

Partner PM spent

CIEMAT 5.4

9.1. Performance and scalability Assessment

Known performance/scalability bottlenecks Several tests on strong and weak scalability have
been performed. This analysis has been carried out internally by the project team, though
following the structure of any report issued by the POP CoE. In this sense, it extends this
performance methodology in order to be uptaken by the scientific community.

The loss of efficiency observed in this report is due to the serialisation and temporal imbalances
of the code that increase with the scale. The analysis identified different regions with temporal
imbalances as well as how the imbalance of the largest computing region is absorbed by the point
to point communications. The code has around 25000 calls to MPI Comm rank() per process on
each iteration.

The global balance of the code is good and it does not increase with the scale in the range of
MPI ranks analysed.

Traditional strong and weak scalability tests have been performed. Deeper analysis of the code
performance is carried out with Paraver.

9.2. Improvements to Performance and Scalability

Improving communication patterns Reducing the communication calls per process is expected
to increase the performance. Despite the individual overhead is small, it is an issue to overcome
for the whole test execution.

Tests have been performed with two specific WRF modules designed and implemented by
CIEMAT: PBL (YSU) and SL (Revised MM5 surface layer scheme). There is then good experi-
ence with them and how they work from both the computational and modelling point of view.
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See e.g. [10–12]. Within ENERXICO, these modules have been used in WP2. Specifically, to
identify the most relevant coupling parameters between meso- and micro-scale models for making
a comparison with a high resolution climatology obtained with WRF.

Communication efficiency is the worst actor in a global efficiency analysis, presenting values of
around 70% out of ideal 100%. We expect to enhance this behaviour around 5-10% by substituting
some calls by local variables.

Results The efficiency analysis has allowed identifying the observed problems on the scalability,
which are correlated with serialisation, transfer, and computational scalability.

The total number of instructions executed by the computations increases with the scale, which
has suggested a code replication or increase of instructions due to the higher number of boundary
cells when increasing the scale.

The computational environment description follows:

• 1 to 44 nodes PowerEdge C6420 with 2 Xeon Gold 6148 2,4GHz 40 cores/node

• RAM: 192 GB/node

• Infiniband EDR 100GB/s

• Storage: 28 x disks 12TB 7.2K NLSAS 12GB 3,5”

Looking at one iteration, the first part of the iteration corresponds to a region with a very large
number of calls to MPI Comm rank() per process (in the whole iteration the number is around
25000). Despite the overhead to call the library to get the rank would be small, accessing to a
local variable that stores the value is expected to eliminate all these library calls. This has been
the strategy followed.

In comparison to our old implementation, we achieved a speedup of ∼ 8% in average in the
strong scalability (see Figure 18).

The loss of strong scalability is obviously not due to the I/O time since the size of the problem,
and hence I/O time, is constant for all the points in the figure. The loss of efficiency comes from
the increase in communication time since the number of points in each cell is less and less as
the distribution in the number of cores increases. Communication is a mix of intra and extra
node since the number of cores according to the number of cells in the horizontal dimensions
have been balanced (as advised in the WRF user forum, this is much more efficient than filling
nodes, unless the simulation was covering a perfect square) and does not always correspond to
a multiple of the number of cores per node. WRF developers advise using a minimum of 50000
points per core; below that threshold there is a loss of efficiency due to communications. A
test on weak scalability has been performed, the results of which are depicted in Figure 19. For
carrying it out, ad hoc spaces were created, i.e. 1 × 105 and 2.5 × 105 points per cell. Results
show a good agreement with a best ideal fit.

9.3. Summary and Outlook

Within the ENERXICO project we plan to conduct tests on energy consumption per code. It is
the final aim to publish computational and energy efficiency results in a joint publication. Future
work will be dedicated to carry out these energy tests and prepare the publication.
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Figure 18: Strong scalability according to the Amdahl Law. An efficiency of 60% is obtained for
the maximum number of cores (675). Results are an average of 5 measurements (error
bars are below 3% and are not depicted for readability reasons)
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Figure 19: Weak scalability results for ad hoc spaces created; blue stands for 2.5 · 105 points per
cell and green does for 105 points per cell. Best ideal fit is depicted with orange and
red lines.
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A. Appendix

A.1. ExaHyPE Setup for Zen2

The 3 dimensionnal domain is setup as follow

"computational_domain": {

"dimension": 3,

"time_steps": 100,

"offset": [ -20.5, 0.0 , -20.5 ],

"width" : [ 94.0, 94.0, 47.0 ]

}

The solver is defined as follow

"solvers": [

{

"type": "ADER-DG",

"name": "ElasticWaveSolver",

"order": 7,

"maximum_mesh_size": 3.0,

"maximum_mesh_depth": 0,

"time_stepping": "global",

"aderdg_kernel": {

"language": "C",

"nonlinear": false,

"terms": ["ncp", "flux", "material_parameters", "point_sources"],

"space_time_predictor": {"split_ck":true,"vectorise_terms":true},

"optimised_terms": [],

"optimised_kernel_debugging": [],

"implementation": "optimised",

"adjust_solution": "patchwise",

"basis": "Lobatto"

},

"point_sources": 1,

"variables": [

{ "name": "v" , "multiplicity": 3 },

{ "name": "sigma","multiplicity": 6 }

]

"material_parameters": [

{ "name": "rho","multiplicity": 1 },

{ "name": "cp" ,"multiplicity": 1 },

{ "name": "cs" ,"multiplicity": 1 },

{ "name": "jacobian","multiplicity": 1},

{ "name": "metric_derivative", "multiplicity": 9 },

{ "name": "curve_grid", "multiplicity": 3 }

],

"parameters": {
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"scenario" : "Loh1",

"topography" : "None"

},

}

]

A.2. Compiling and Running SeisSol

To compile SeisSol, the latest version from the Github master branch is downloaded including
all submodules (ImpalaJIT and yaml-cpp):

$ git clone https://github.com/SeisSol/SeisSol.git

$ git submodule update --init

The following software environment is used:

• Intel compiler 2020 update 2,

• Intel MPI 2020 update 2,

• CMake 3.10.0,

• Python 3.7 available in Anaconda 3.0,

• NumPy 1.18 available in Anaconda 3.0,

• HDF5 version 1.10.4,

• NetCDF version 4.6.1,

• ParMETIS version 4.0.3,

• LIBXSMM version release 1.15,

• PSpaMM available in the master branch on Github.

The submodules and dependencies are compiled as follow:

export CC=mpiicc

export CXX=mpiicpc

export FC=mpiifort

export PATH=${MYDIR}/bin:$PATH

export LD_LIBRARY_PATH=${MYDIR}/lib:$LD_LIBRARY_PATH

export LIBRARY_PATH=${MYDIR}/lib:$LIBRARY_PATH

export CPATH=${MYDIR}/include:$CPATH

export PKG_CONFIG_PATH=${MYDIR}/lib/pkgconfig:$PKG_CONFIG_PATH

# ImpalaJIT

cd submodules/ImpalaJIT

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=${MYDIR} -- ..

make -j16 install

cd ../../
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# yaml-cpp

cd submodules/yaml-cpp

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=${MYDIR} -DYAML_CPP_BUILD_TOOLS=OFF

-DYAML_CPP_BUILD_TESTS=OFF -- ..↪→

make -j16 install

cd ../../

# HDF5

cd hdf5-1.10.4

CPPFLAGS="-fPIC ${CPPFLAGS}" ./configure --enable-parallel --prefix=${MYDIR}

--with-zlib --disable-shared --enable-fortran↪→

make -j16

make install

cd ..

# netCDF

cd netcdf-4.6.1

CFLAGS="-fPIC ${CFLAGS}" CC=h5pcc ./configure --enable-shared=no

--prefix=${MYDIR} --disable-dap↪→

make -j16

make install

cd ..

# LIBXSMM

cd libxsmm

make generator

cp bin/libxsmm_gemm_generator ${MYDIR}/bin

cd ..

# PSpaMM

ln -s $(pwd)/PSpaMM/pspamm.py ${MYDIR}/bin

# ParMETIS

cd parmetis-4.0.3

#edit ./metis/include/metis.h IDXTYPEWIDTH to be 64 (default is 32).

make config cc=mpiicc cxx=mpiicpc prefix=${MYDIR}

make -j16 install

cp build/Linux-x86_64/libmetis/libmetis.a ${MYDIR}/lib

cp metis/include/metis.h ${MYDIR}/include

cd ..

Finally, SeisSol is compiled as follow:

export CC=mpiicc

export CXX=mpiicpc
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export FC=mpiifort

export PATH=${MYDIR}/bin:$PATH

export LD_LIBRARY_PATH=${MYDIR}/lib:$LD_LIBRARY_PATH

export LIBRARY_PATH=${MYDIR}/lib:$LIBRARY_PATH

export CPATH=${MYDIR}/include:$CPATH

export PKG_CONFIG_PATH=${MYDIR}/lib/pkgconfig:$PKG_CONFIG_PATH

mkdir build && cd build

cmake -DNETCDF=ON -DMETIS=ON -DCOMMTHREAD=ON -DASAGI=OFF -DHDF5=ON

-DCMAKE_BUILD_TYPE=Release -DTESTING=OFF -DLOG_LEVEL=warning

-DLOG_LEVEL_MASTER=info -DARCH=hsw -DPRECISION=double -DPLASTICITY=ON

-DGEMM_TOOLS_LIST="LIBXSMM" ..

↪→

↪→

↪→

make -j16

For running the simulations, the parameter file “parameter tpv13.par” is used after adjusting the
length of the simulation “EndTime = 1.0” to have a reasonable execution time.

&equations

MaterialFileName = 'tpv12_13_material.yaml'

Plasticity = 1

Tv = 0.03

/

&IniCondition

/

&Boundaries

BC_fs = 1

BC_dr = 1 ! Fault boundaries

BC_of = 1 ! Absorbing boundaries

/

&DynamicRupture

FL = 16

ModelFileName = 'tpv12_13_fault.yaml'

inst_healing=0

GPwise = 1 ! elementwise =0 ; GPwise =1

XRef = 0.0 ! Reference point

YRef = -3.0e5

ZRef = -7.0e9

RF_output_on = 1 ! RF on

OutputPointType = 5 ! Type (0: no output, 1: take GP s 2: 4 points per

surface triangle, 3: output at certain pickpoints)↪→

t_0 = 0.0

/
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&Elementwise

printIntervalCriterion = 2 ! 1=iteration, 2=time

printtimeinterval_sec = 0.5 ! Time interval at which output will be written

OutputMask = 1 1 1 0 1 1 1 1 1 0 0 ! output 1/ yes, 0/ no - position: 1/

slip rate 2/ stress 3/ normal velocity 4/ in case of rate and state output

friction and state variable

↪→

↪→

! 5/ background values

refinement_strategy = 2

refinement = 1

/

&Pickpoint

printtimeinterval = 1 ! Index of printed info at timesteps

OutputMask = 1 1 1 0 ! output 1/ yes, 0/ no - position: 1/ slip rate 2/

stress 3/ normal velocity 4/ in case of rate and state output friction and

state variable ! 5/ background values

↪→

↪→

nOutpoints = 10

PPFileName = 'tpv13_faultreceivers.dat'

/

&SourceType

/

&SpongeLayer

/

&MeshNml

MeshFile = './mesh/tpv12_13_200m' ! Name of mesh file

meshgenerator = 'PUML' ! Name of meshgenerator (format)

/

&Discretization

Material = 1 ! Material order

CFL = 0.5 ! CFL number (<=1.0)

FixTimeStep = 5 ! Manualy chosen minimum time

ClusteredLTS=2 ! This enables local time stepping

/

&Output

OutputFile ='./output13/tpv13'

iOutputMask = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! Variables ouptut

iOutputMaskMaterial = 1 1 1 ! Material output

Format = 6

Refinement =1 ! Format (0=IDL, 1=TECPLOT, 2=IBM DX,

4=GiD))↪→

TimeInterval = 0.5 ! Index of printed info at time

printIntervalCriterion = 2 ! Criterion for index of printed info:

1=timesteps,2=time,3=timesteps+time↪→
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SurfaceOutput = 0

SurfaceOutputRefinement = 1

SurfaceOutputInterval = 0.05

pickdt = 0.005 ! Pickpoint Sampling

pickDtType = 1 ! Pickpoint Type

FaultOutputFlag = 1 ! DR output (add this line only if DR is

active)↪→

nRecordPoints = 12 ! number of Record points which are read

from file↪→

RFileName = 'tpv13_receivers.dat' ! Record Points in extra file

/

&AbortCriteria

EndTime = 1.0 ! original value 8.0

/

&Analysis

/

&Debugging

/

Finally, launching SeisSol is done as follow using SLURM:

#!/bin/bash

########################################################################

# SLURM Header

########################################################################

#SBATCH -J SeisSol

#SBATCH -N 1

#SBATCH -p ROME-7742_hdr100_256gb_3200

#SBATCH --time=0:15:00

#SBATCH --exclusive

########################################################################

# Source application environment

source /opt/intel/compilers_and_libraries_2020.2.254/linux/bin/compilervars.sh

intel64↪→

export SEISDIR=${HOME}/software/intelimpi2020u2

export PATH=${SEISDIR}/bin:$PATH

export LIBRARY_PATH=${SEISDIR}/lib:$LIBRARY_PATH

export LD_LIBRARY_PATH=${SEISDIR}/lib:$LD_LIBRARY_PATH

export PKG_CONFIG_PATH=${SEISDIR}/lib/pkgconfig:$PKG_CONFIG_PATH
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export CPATH=${SEISDIR}/include:$CPATH

########################################################################

# Setup OpenMP

export OMP_NUM_THREADS=16

export KMP_AFFINITY=granularity=core,compact

########################################################################

# Setup MPI

export I_MPI_PIN=1

export I_MPI_PIN_DOMAIN=${OMP_NUM_THREADS}:platform

export I_MPI_PIN_ORDER=compact

########################################################################

# Hostfile

nodeset -e $SLURM_NODELIST | tr ' ' '\n' > ./hostfile

########################################################################

# Run application

mpiexec.hydra -np 16 -ppn 16 -hostfile hostfile

./SeisSol_Release_dhsw_elastic_6 parameters_tpv12_13.par 2>&1 | tee

output.log

↪→

↪→

########################################################################

# Post processing

elapsedtime=$(grep 'Elapsed time (via clock_gettime):' output.log | awk

'{print $10}')↪→

hwgflop=$(grep 'Total calculated HW-GFLOP' output.log | awk '{print

$9}' )↪→

echo ${elapsedtime} ${hwgflop}

A.3. Theoretical peak performance

To achieve good performance results on HPC hardware it is a key component to use the pro-
vided hardware as efficient as possible. Each architecture has its specific maximum number of
FLOP/s, which can be achieved. FLOP/s are the measure of performance used for comparing
the theoretical peak performance of a core, processor, node or a system by using floating point
operations. The following formula is used. It can be used by any researcher to compute the
maximum possible FLOP/s on their system.

FLOP/score =
instructions

cycle
∗ operations

instruction
∗ FLOP/s

operation
∗ cycles

second
,

and as processors are composed of many cores, hence

FLOP/sprocessor =
cores

socket
∗ FLOP/score,
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and as modern nodes are often composed of several processors

FLOP/snode =
sockets

node
∗ FLOP/sprocessor,

and finally, for full systems with many nodes, the above formula is extended to

FLOP/ssystem =
nodes

system
∗ FLOP/snode.

Remark. Usually, the theoretical peak performance of a processor is compared to the measured
one. The most common benchmark used is the HPL (High Performance Computing LINPACK
Benchmark). It is a software package that solves a random dense linear system in double precision
arithmetic on distributed memory computers. Therefore, HPL allows to measure the effective peak
performance as opposed to the theoretical peak performance. The ratio between these two figures
corresponds to the HPL efficiency. As a rule of thumb, the HPL efficiency of the nodes presented
in the above table is between 70% and 90% depending on the number of nodes, the tuning of
software environment and many other parameters.
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EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

POP CoE
Dualphysics (POP2_AR050_)

Sandra Mendez (sandra.mendez@bsc.es) , BSC  - March 04, 2020

Applicant: José Domínguez (Core developer) - EPhysLab (Universidade de Vigo)

• Name of the code: DualSPHysics

• Scientific/technical area: Physic

• Programming: C++, CUDA

• Input case:  4 variants of the Dam Break case.

• Platform: CTE-POWER. 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 
cores and 4 threads/core, total 160 threads per node). 512GB of main memory. 4 x 
GPU NVIDIA V100 (Volta) with 16GB HBM2. Software: cuda-9.1+gcc-6.4.0

• Scale: 500k and 2M particles

• Initial set-up: 500k (409088 GPU threads) and 2M (1759360 GPU threads) particles 
for simple and complex physic in Single GPU.

• BSC collected the performance data.

2

Background

B. POP Audit for DualSPHysics
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3

Application structure (1)

Run once on the 
Marenostrum 4 
supercomputer

Run on the CTE-
POWER system by 
using a single GPU

A parallel GPFS 
filesystem is used 
for file I/O 
generated. GPFS 
is accessible from 
the two HPC 
Systems.

4

Initial Performance Evaluation

Runtime and utilized memory correspond to the output reported by the Dualsphysics part.
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Initial profiling with nvprof

Default stream depicts the whole behavior for the parallel application. It can observed the 
kernels in blue scale and in brown scale the data copy between the host/device. 
Computation is representing less than 50% of the total runtime. The theoretical occupancy 
is near the 50%.

Profiling – kernel and CUDA API
Kernel with more timing in the total runtime: KerInteractionForcesFluid

CUDA API with more timing in the total runtime: memcpy

Simple physic timing represents a high percentage of runtime for the kernels that increase for 2M of particles. A 
similar behavior can be observed for the complex physics. The parallel degree at CUDA level is done by using 
3196 grids and 128 blocks for 5k cases and 13745 grids and 128 blocks for 2M cases.
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FOA: InteractionForcesFluid (Sp_500k) 

kernel Time(%) Time Calls Avg Min Max

Interaction
ForceFluid

75.53% 47.40s 21436 2.21ms 2.12ms 2.53ms

GPU Utilization

API Time(%) Time Calls Avg Min Max

cudaMemcpy 60.13% 53.98s 128631 419.62us 18.42us 4.56ms

API Calls

Grid Size Block Size Register per CUDA thread

(3196 1 1) (128 1 1) 62

The kernel InteractionForcesFluid, its 
memcpy size is very small 4B. 

Size memcpy (bytes) Count Total (bytes)

32B 21437 685984

4B 64308 257232

8B 42875 343000

FOA: InteractionForcesFluid (Sp_2M) 

kernel Time(%) Time Calls Avg Min Max

Interaction
ForceFluid

83.14% 339.4s 35461 9.57ms 9.22ms 10.9ms

GPU Utilization

API Time(%) Time Calls Avg Min Max

cudaMemcpy 75.92% 361.1s 212781 1.7ms 17.4us 22.5ms

API Calls

Grid Size Block Size Register per CUDA thread

(13745 1 1) (128 1 1) 62

The kernel InteractionForcesFluid, its 
memcpy size is very small 4B. 
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FOA: InteractionForcesFluid  (Cx_500k)

kernel Time(%) Time Calls Avg Min Max

Interaction
ForceFluid

79.6% 211.7s 64188 3.3ms 3.1ms 3.9ms

GPU Utilization

API Time(%) Time Calls Avg Min Max

cudaMemcpy 60.03% 235.0s 449330 523us 17.7us 110ms

API Calls

Grid Size Block Size Register per CUDA thread

(3196 1 1) (128 1 1) 68

The kernel InteractionForcesFluid, its 
memcpy size is very small 4B. 

FOA: InteractionForcesFluid (Cx_2M)

kernel Time(%) Time Calls Avg Min Max

Interaction
ForceFluid

85.58% 1.6e+03s 111092 14.3ms 13.9ms 16.7ms

GPU Utilization

API Time(%) Time Calls Avg Min Max

cudaMemcpy 80.69% 1.7e+03s 777658 2.2ms 17.2us 64.4ms

API Calls

Grid Size Block Size Register per CUDA thread

(13745 1 1) (128 1 1) 62

The kernel InteractionForcesFluid, its 
memcpy  size is very small 4B. 
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Summary by nvprof 
Main observations for Sp_500k 
case (Paraver/Extrae traces show a 
similar behavior for the four cases)

12

Summary of observations
● The kernel KerInteractionForcesFluid represents more than 70%  of the 

total kernels execution time. 
● The kernel KerInteractionForcesFluid has more impact on the  execution 

time in the four cases, due to the small data copied by memcpy API. This 
behavior is similar for simple and complex physic cases.

● Computation time is less than 50% of the  total  runtime for the four cases.
● CUDA memcpy is representing around the 60% of the execution time that 

is produced by the the kernel KerInteractionForcesFluid.
● Application’s Kernel needs an additional refactoring to increase the degree 

of parallelism, it could be an Multi-GPU or explicit Streams programming.
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Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es
    @POP_HPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080. 

Performance Optimisation and Productivity 
A Centre of Excellence in HPC
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