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1. Executive Summary 
 

This deliverable presents performance audits of the codes within the Enerxico 
project, which collects all the technical information, test cases and results for 
each Enerxico code (listed below). 

Its content gathers all mandatory inputs to identify what optimization/portability 
needs to be performed within this project, so that the “Exascale Enabling” work 
package (WP1) may reach the final targets. 

 

From the Performance Audits these are the most relevant highlights per code: 

1. ALYA: the main cause of efficiency loss is the load balancing issue. A 
shared memory parallel version of the function causing the load 
imbalance may mitigate this problem.  

2. BSIT: the roofline analysis shows a low arithmetic intensity, L1 and L2 
memory access should be improved to data reuse. GPU utilization 
shows that efficiency is bounded by the memory bandwidth. 

3. WRF: there is an effective good scalability up to 32 processes. To use 
more processes, it is recommended to increase the test case size. In 
general, the application presents good results in terms of efficiency, 
scalability and load balance. 

4. SeisSol: in previous audits and analysis, SeisSol shows excellent results 
in terms of node-level performance (on Intel architectures), scalability 
and load balance. The focus for performance optimization will therefore 
be on model extensions and on non-Intel architectures. 

5. ExaHyPE: the analysis was performed by Atos due to the lack of support 
for hybrid MPI+TBB (Intel’s Thread Building Blocks) programming 
paradigms in Extrae. The analysis has shown a good efficiency although 
some issues have been identified: cache stalls limit the performance of 
the application and the compiler was not able to vectorize the intensive 
parts of the code. 

6. EM46: the first track of optimization is the improvement of a relatively 
low IPC (Instruction Per Cycle) for the second configuration (Full 
Waveform Inversion with all waves and one shot). The second track 
consist in the improvement of the MPI synchronizations by removing 
unnecessary barriers.  

7. DualSPHysics: The Mexican partners have started working on the 
application with a 6-month delay. The POP’s analysis of DualSPHysics 
is not yet completed. However, we have decided to share the preliminary 
information we have available for our use. 
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2. Introduction 
 

A pre-work has been performed to list all the codes that partners intended to 
use for the scientific research on the work packages 2, 3 and 4. 

This deliverable summarizes the performance evaluation of applications done 
in collaboration with the Performance Optimization and Productivity (POP1) 
Center of Excellence and using the toolset developed by POP partners and 
collaborators (Extrae2 and Score-p3). 

It is based on formal performance evaluation using POP’s protocols and 
preliminary performance results focusing on the code readiness, and/or on the 
test cases and tools flexibility (i.e., Intel Threading Building Blocks TBB). 

The document is composed of three main parts : 

1. The first part lists the applications which will be analyzed and optimized in 
work package 1; 

2. The second part covers for each application the following subtopics :  

- Code description, obtained from the surveys provided by the developers; 

- Known hardware and software dependencies; 

- Test cases to be evaluated during the performance audit; 

- Results of the initial evaluation; 

- Conclusion and next steps. 

In this part, a detailed description such as the code version, the computing 
environment, the test case description, of each application is given. A precise 
analysis of the results is carried out to identify the main bottlenecks. Finally, for 
each application, a conclusion is given with the identified optimizations that 
shall be investigated. 

3. The third part is a conclusion which highlights the overall main results of the 
analysis and summarizes the next steps to reach the project targets for work 
package 1: 

- Tasks 1.1 “Intra-node optimization and portability” targets to run 
correctly and efficiently codes on a single node, that may involve one or 
more of the following optimizations: memory utilization, thread 
parallelism, vectorization, optimizations at the algorithmic level, porting 
to accelerators and so on. 

- Tasks 1.2 “Exploiting multi-node parallelism in Exascale 
architecture” targets to exploit communication efficiency, parallel I/O 
capabilities and mitigate load balancing issues. 

 
1 Performance Optimisation and Productivity (https://pop-coe.eu/) 
2 Extrae Profiling Tool (https://tools.bsc.es/extrae) 
3 Scalable Performance Measurement Infrastructure for Parallel Codes 

(https://www.vihps.org/projects/score-p/) 



                                                                                                                                                     

D1.1 Code Optimization and Portability  
Version 1 
 

 

 7 

- Tasks 1.3 “Enabling computational and energy efficient codes for 
the Exascale” focuses on constant performance evaluation, both at the 
computational and energetic level to guaranty more efficient 
applications.  

 

 

3. Codes 
 

Eight Codes have been identified for the project: 

1. ALYA 

2. BSIT 

3. WRF 

4. SeisSol 

5. ExaHyPE 

6. SEM46 

7. DualPhysics 

 

Code information specificity has been collected for each of them. Extract from 
POP reports have been reported when fitting the WP1 expectations. 
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4. Code Analysis 
 

4.1 ALYA 
 

4.1.1 Overview 

Alya is a high-performance computational mechanics code to solve engineering 
coupled problems. The different physics solved by Alya are 
incompressible/compressible flow, solid mechanics, chemistry, particle 
transport, heat transfer, turbulence modeling, electrical propagation, among 
others. 

Multiphysics coupling is achieved in a multi-code manner. MPI is used to 
communicate between the different instances of Alya, where each instance 
solves a particular physics, with the potential of performing asynchronous 
executions of the different physics. Alya is specially designed for massively 
parallel supercomputers. 

 

Code description 
 

Source Code Repository 

• Available upon request 

Version 

• Version 2.0 

Code Versioning Tool 

• Currently migrating from SVN to Git 

• Repository only accessible previously from CASE Department at BSC 

Sanity Check / Unit Testing Framework 

• Unit testing framework available 

Documentation 

• User and Developer documentation available at 
http://gitlab.bsc.es/alya/alya/wikis/home 

Code Current Performance 

• Alya has been widely evaluated and improved regarding scalability 
and parallel I/O. Potential further evaluations will be related to 
executing Alya on accelerators, such as GPUs. 

Ongoing Research 

• Contact 
o Guillaume Houzeaux 
o Mariano Vasquez 

• Developer/Maintainers (ENERXICO related) 
o Daniel Mira: daniel.mira@bsc.es 
o Oriol Lehmkul: oriol.lehmkul@bsc.es 

• Latest publications 
o Macià, Sandra & Mateo, Sergi & Martínez-Ferrer, Pedro & 

Beltran, Vicenç & Mira, Daniel & Ayguadé, Eduard. (2018). 

mailto:Daniel.mira@bsc.es
mailto:oriol.lehmkul@bsc.es
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Saiph: Towards a DSL for High-Performance Computational 
Fluid Dynamics. 1-10. 10.1145/3183895.3183896. 

o S. Gövert, D. Mira, M. Zavala-Ake, J.B.W. Kok, M. Vázquez, G. 
Houzeaux, (2017). Heat loss prediction of a confined premixed 
jet flame using a conjugate heat transfer approach, 
International Journal of Heat and Mass Transfer, Volume 107, 
2017, Pages 882-894, ISSN 0017-9310, 
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.122. 

o Vázquez, Mariano & Houzeaux, Guillaume & Koric, Seid. 
(2014). Alya: Towards Exascale for Engineering Simulation 
Codes. 

 

Software Requirements 
 

Compiler and runtime 

• Intel, GNU, Plefortran  

External or Third-Party Libraries 

• Metis for parallelism (mandatory) 

Management tools 

• Makefile 

I/O Libraries 

• HDF5 

Tools/Libraries for the code workflow 

• Available within Alya 

 

Hardware Requirements 
 

Node Level 

• Alya has shown excellent performance in almost any architecture 

• GPUs are targeted 

Network 

• No special requirement 

Storage 

• No special requirement 

 

4.1.2 Tests Conditions 
 

Computational Environment Description 

• Platform: MareNostrum IV  

• 2 x Intel Xeon Platinum 8160 24C at 2.1 GHz per node 

• 97 or 384 GB of memory per node 

• Storage: 200 GB local SSD 

• Interconnection network: 100 Gb Intel OmniPath 

 
 

Test Case Description 
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• Methane/air premixed Bunsen flame in a confined domain at ambient 
conditions T= 300K and p=1 bar. The chemical kinetics is based on a 
GRI3.0 chemical scheme with 53 species and 325 reactions and the 
problem is solved with a finite rate chemistry model. 

• Scale: from 8 to 768 MPI tasks 

• Initial set-up: 50 iterations, reduced to 7 iterations. 

 

4.1.3 Results 
 

Application structure 

• First analysis with 50 iterations and 48 MPI 
o Phases clearly identified in the tracefile: initialization and 

iterative computation, 
o Great density of communications, better focus on less 

iterations. 

• The application is structured with a master task that does not perform 
useful computations; it communicates with all the processes using MPI 
collectives. 

• The Useful Duration view suggests a load balance problem, some 
processes have more density of useful computation than the rest. 

 

Focus of Analysis 

• We identify a large time inside MPI communications (around 50%) 
o Very low useful computation time, in average, half of the time 

inside MPI, 
o Big difference between useful computation time among 

processes. 

• Difference between minimum (19.31%) and maximum (80.84%) and 
the value of standard deviation (10.87%) suggest a load balance 
problem. 

• Maximum is not ideal. It suggests that there is space for improvement. 

• The low value of useful computation time is due to load imbalance. 
The tasks with less work remain in MPI calls waiting to others. 

 

Scalability 

• Bad scalability. 

• Speed up below 5 for 8 node (384 MPI ranks) runs. 

 

Efficiency analysis 

• The main factor limiting the scalability identified by the efficiency 
analysis is load imbalance 

o 75.82% for 8 MPI tasks, 
o 35.75% for 768 MPI tasks. 

• When scaling the number of nodes, the transfer inefficiency has a low 
value 

o 99.88% for 8 MPI tasks, 
o 82.25% for 768 MPI tasks. 
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• The IPC of the application is reduced when the node is full of 
processes 

o 100% for 8 MPI tasks, 
o 93.59% for 48 MPI tasks, 
o 92.90% for 768 MPI tasks. 

• The number of useful instructions required to solve the same problem 
increases substantially when the number of processes increases. 

 

Load balance 

• Instructions are the leading cause of the load imbalance. 

• This means that the work is not getting distributed between the 
processors evenly. 

• The load balance of the application is better than the instruction 
balance 

o Processors that have more work do not share node resources 
and thus, have a better IPC. 

 

4.1.4 Conclusion 
 

Summary 

• The main loose of efficiency is due to load balance 

• Load imbalance can be addressed from an algorithmic point of view. This 
should be the main target for next code optimizations. 

• For further analysis on the communication efficiency and instruction 
scalability, we recommend repeating the analysis on a bigger input set.  

 

Next steps  

• We suggest implementing a shared memory parallel version of the 
function causing the load imbalance using OmpSs or OpenMP and 
finally apply Dynamic Load Balancing (DLB). 
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4.2 BSIT 
 

4.2.1 Overview 

BSIT is a software platform, designed and developed to fulfill the geophysical 
exploration needs for HPC applications. 

Geophysical exploration is a field with huge amount of computational resources 
needs. BSIT platform was developed to cope with such needs, including 
different type of processing systems running over a wide range or HPC 
architectures. The main systems included in BSIT are forward modelling, 
reverse time migration and full waveform inversion. 

In addition, the software supports different rheologies including acoustic, 
acoustic with variable density, elastic, viscoelastic and electromagnetic. 
Moreover, several levels of anisotropy are supported: VTI/HTI, Orthorhombic, 
TTI and arbitrary anisotropy (for elastic and viscoelastic rheologies). 

 

Code description 
 

Source Code Repository 

• Repository only accessible previously from CASE Department at BSC 

Version 

• Version 2018.12 property of Repsol S.A. 

Code Versioning Tool 

• Currently migrating from SVN to Git 

• Repository only accessible previously from CASE Department at BSC 

Sanity Check / Unit Testing Framework 

• Unit testing 

• Integration testing 

• Regression testing 

• Testing framework: STEEL (In-house development) 

Documentation 

• Within BSIT’s repository 

Code Current Performance 

• Measured performances 
o Previous performance analyses have been carried out on 

General Purpose architectures, such as Intel Skylake, and on 
accelerators (e.g. Intel Knight Landing and Nvidia K80) 

• Recognized bottlenecks 
o Memory bottlenecks: FSG (Full Staggered Grid) is memory 

expensive and will be conditioned by the total memory available 
in the node. 

o Lack of scalability: We have observed efficiency degradation 
starting from 4 CPUs, further evaluation with more than one 
node is pending. 

o Compute/communication ratio in GPUs (pending to evaluate). 

Ongoing Research 
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• Contact 
o Albert Farrés albert.farres@bsc.es 

• Developer/Maintainers (ENERXICO related) 
o Mauricio Hanzich 
o Josep de la Puente 
o Natalia Gutierrez 
o Juan Esteban Rodriguez 
o Albert Farrés 
o Claudio Marquez 
o Miguel Ferrer 
o Samuel Rodriguez 
o Jean Corman 
o Raúl de la Cruz 
o Genis Aguilar 

• Latest publications 
o Albert Farrés, Claudia Rosas, Mauricio Hanzich, Marc Jordà 

and Antonio Peña. (2019). “Performance Evaluation of Fully 
Anisotropic Elastic Wave Propagation on NVIDIA Volta GPUs”. 
81st EAGE Conference and Exhibition. DOI: 10.3997/2214-
4609.201901307 

o Albert Farrés, Claudia Rosas, Mauricio Hanzich, Charles Yount, 
and Alejandro Duran. (2018). “Performance optimization of fully 
anisotropic elastic wave propagation on 2nd Generation Intel 
Xeon Phi processors”. The 19th IEEE International Workshop 
on Parallel and Distributed Scientific and Engineering 
Computing. Vancouver, Canada. 21-25 May 2018. ISBN: 978-
1-5386-5555-9. DOI: 10.1109/IPDPSW.2018.00158 

o Matheus S. Serpa, Eduardo HM Cruz, Matthias Diener, Arthur 
M. Krause, Philippe O.A. Navaux, Jairo Panetta, Albert Farrés, 
Claudia Rosas, and Mauricio Hanzich (2019). Optimization 
strategies for geophysics models on manycore systems. The 
International Journal of High-Performance Computing 
Applications, 33(3), 473–486. 
https://doi.org/10.1177/1094342018824150 

 

Software Requirements 
 

Compiler and runtime 

• Intel, GNU, IBM XL, CUDA version: 10.1, CUDA driver: 418.39 

External or Third-Party Libraries 

• Mandatory 
o LAPACK 
o FFTW 
o OpenMP (included in the compiler) 

• Optional 
o MKL 
o PETSc 

Management tools 

mailto:albert.farres@bsc.es
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• Makefile 

I/O Libraries 

• None  

Tools/Libraries for the code workflow 

• Available within BSIT 

 

Hardware Requirements 
 

Node Level 

• Memory may vary depending on the problem size 

• GPU: Nvidia V100 

Network 

• Mellanox EDR 

Storage 

• > 200 GB 

 

4.2.2 Tests Conditions 
 

Computational Environment Description 

CTE-POWER is a cluster based on IBM Power9 processors, with a Linux 
Operating System and an Infiniband interconnection network. 
 
It has the following configuration: 

• 2 login node and 52 compute nodes, each of them: 

• 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 
4 threads/core, total 160 threads per node) 

• 512GB of main memory distributed in 16 DIMMs x 32GB @ 2666MHz 

• 2 x SSD 1.9TB as local storage 

• 2 x 3.2TB NVME 

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2. 

• Single Port Mellanox EDR 

• GPFS via one fiber link 10 GBit 
The operating system is Red Hat Enterprise Linux Server 7.5 alternative. 

 

Test Case Description 

Tests to be covered are 3D Elastic Fully Staggered Grid: 

• Case A (small): unity test (seconds/minutes) 
This test describes a homogeneous half space which is excited by a point 
explosion in a configuration known as Garvin's problem. This test 
compares the results of a simulation running with a mimetic free-surface 
with a 6 ppw configuration against an analytical solution obtained with the 
code EX2DVAEL by Berg and If (1994). The receivers are spaced 100m 
along the x-direction. 

• Case B (medium/large): production chain (hours) 
The main goal of this test set is to evaluate the elastic propagation of the 
modeling PoC+kernel case for isotropic materials. The test runs an 
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Overthrust campaign of 72 shots. Main Parameters: 
- Force source (1.0, 0.0, 0.0) with a peak frequency of 5 Hz. 
- Boundary condition used is "sponge" with a 40-point halo width. 
- Mimetic free surface used. 
- Four seismogram channels produced at 0.001 seconds interval. 
- No illumination nor snapshots are produced. 
- The FSG propagation kernel is being in use for all the HPC 
environments. 
- Maximum Z value: 3180.0 mts. 
- 72 shots campaign - Line 37 
- Ricker wavelet from file. 
- Source peak frequency at 10 Hz 
- Grid: 440x2201x2201 with dz = 7.24, dx = dy = 7.26 m. 

 

4.2.3 Results 
 

Application structure 

• From approximately 5 seconds of total execution time with 8 
computing threads: 

o It is easy to identify all the processing phases: from initialization 
to iterative computation and finalization, 

o There is some serialization in the communications phase, better 
focus on a few iterations, e.g. 8 time steps. 

• The implementation of this algorithm relies on all-to-all 
communications between all the processing threads that end up 
serialized. 

There are no apparent unbalances but is clearly highlighted a synchronization 
when communication from CPU (host) to GPU. 

 

Focus of Analysis 

Our base implementation is the direct result of developing the finite 
differences method over a Full Staggered Grid (FSG). It creates a loop in time 
to update velocities based on stresses values in odd iterations and the other 
way around for even iterations.  
 
To update velocities, 12 different 3D stencils plus another 12 3D material 
interpolations for each point of the grid must be calculated. Materials are 
stored in a single vertex of the FSG cell for memory saving issues, trading 
storage per computation. On the other hand, the computation involves 28 3D-
stencils computation plus 84 3D interpolations for the material properties to 
update stresses. Notice that both velocities and stresses calculations are 
typically dominated by accesses to global memory to retrieve the data needed 
to update the corresponding values.  
 
Our baseline version of the code has the two innermost loops in space 
mapped to a 2D Cuda grid, streaming cells to update to each thread over the 
slowest dimension (Y) 
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Efficiency analysis 

After observing the arithmetical intensity of the kernel in this architecture, and 
despite stencil calculations are usually limited by memory bandwidth, we 
observe similar efficiencies at both L2 and High Bandwidth memory.  
The roofline model shows that at that it will be necessary to improve that 
arithmetic intensity to achieve higher FLOPS. 

 

GPU Utilization 

Low Global Memory Efficiency: kernels accounting for 40.6% of compute 
have low efficiency (72.7% in average) 
 
For Tesla V100-sMX2-16GB the kernel’s compute utilization is significantly 
lower than its memory utilization. These utilization levels indicate that the 
performance of the kernel is most likely being limited by the memory system. 
For this kernel, the limiting factor in the memory system is the bandwidth of 
the Device memory. 
 
Global load efficiency indicates how well the application global loads are 
using device memory bandwidth. The efficiency is the number of bytes 
requested divided by the number of bytes that were transferred from device 
memory to satisfy request. Because device memory transfers bytes in blocks, 
the alignment and the access pattern of a given load determines how many 
blocks must be transferred and thus determines the efficiency of that load. 
Low efficiency indicates that one or more global memory loads have a poor 
access pattern or alignment. 

 

MPI analysis 

• On average, approximately a 49.10% of total MPI Calls time is 
invested in Waiting. 

• Despite having implemented asynchronous MPI calls, threads 
communications end up complete serialized. 

 

4.2.4 Conclusion 

 

Summary 

• The main loss of efficiency was due to poor scalability 
o Due to synchronous data transfer between host and device 
o This issue has been fixed and scalability is now good 

• Roofline analysis shows a low arithmetic intensity (common in stencil 
codes) 

• GPU utilization analysis confirms that performance is bounded by the 
memory system 

o Limiting factor: Bandwidth in device memory 
 

Next steps  

• L1 and L2 memory access should be improved to reuse data and 
increase the arithmetic intensity.  
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• If arithmetic intensity is increased there is room for a performance 
(GFLOPS) improvement 

• Efficiency can be increased by fixing data alignments and improving 
memory access patterns 
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4.3 WRF 
 

4.3.1 Overview 
 
WRF is a mesoscale numerical weather prediction system designed for both atmos-
pheric research and operational forecasting applications. It features two dynamical 
cores, a data assimilation system, and a software architecture supporting parallel com-
putation and system extensibility. The model serves a wide range of meteorological 
applications across scales from tens of meters to thousands of kilometers. The effort 
to develop WRF began in the latter 1990's and was a collaborative partnership of the 
National Center for Atmospheric Research (NCAR), the National Oceanic and Atmos-
pheric Administration (represented by the National Centers for Environmental Predic-
tion (NCEP) and the Earth System Research Laboratory), the U.S. Air Force, the Naval 
Research Laboratory, the University of Oklahoma, and the Federal Aviation Admin-
istration (FAA). 
 
For researchers, WRF can produce simulations based on actual atmospheric condi-
tions (i.e., from observations and analyses) or idealized conditions. WRF offers oper-
ational forecasting a flexible and computationally efficient platform, while reflecting re-
cent advances in physics, numeric, and data assimilation contributed by developers 
from the expansive research community. WRF is currently in operational use at NCEP 
and other national meteorological centers as well as in real-time forecasting configu-
rations at laboratories, universities, and companies. 
 
WRF has a large worldwide community of registered users (a cumulative total of over 
48,000 in over 160 countries), and NCAR provides regular workshops and tutorials on 
it. The WRF system contains two dynamical solvers, referred to as the ARW (Advanced 
Research WRF) core and the NMM (Nonhydrostatic Mesoscale Model) core. The ARW 
has been developed in large part and is maintained by NCAR's Mesoscale and Mi-
croscale Meteorology Laboratory, and its users' page is: WRF-ARW Users' Page. The 
NMM core was developed by the National Centers for Environmental Prediction 
(NCEP) and is currently used in their HWRF (Hurricane WRF) system. 

 

Code description 
 

Source Code Repository 

• https://github.com/wrf-model/WRF/releases 

• https://www2.mmm.ucar.edu/wrf/users/wrfv4.1/updates-4.1.html 

• https://www2.mmm.ucar.edu/wrf/users/downloads.html  

Version 

• WRF V4.2 

• Tests are focused on the following two modules included in the main 
WRF module: 

o PBL: YSU 
o SL: Revised MM5 surface layer scheme 

 

Code Versioning Tool 

The recommended method is to clone the code from public GitHub repository: 

• git clone https://github.com/wrf-model/WRF 

Numerical scheme(s) used and implementation issues: 

https://github.com/wrf-model/WRF/releases
https://www2.mmm.ucar.edu/wrf/users/wrfv4.1/updates-4.1.html
https://www2.mmm.ucar.edu/wrf/users/downloads.html
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• Short description:  
The weather research and forecast models have a lot of numerical schemes. 
The schemes are available at the following web page: 
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/users_
guide_chap5.html#Phys 
 

• Specificity:  
The only implementation issues are the incompatibility between numerical 
schemes 

Sanity Check / Unit Testing Framework 

• https://www2.mmm.ucar.edu/wrf/users/wrfv4.0/testing.html 

Documentation 

• https://github.com/wrf-model/WRF/wiki 

• https://www2.mmm.ucar.edu/wrf/users/pub-doc.html  

Code Current Performance 

There is a POP performance study of WRF that will be used as a baseline for 
the new performance characterization planned within Enerxico 

Ongoing Research 

Contacts :  

• Jorge Navarro (jorge.navarro@ciemat.es);  

• Rafael Mayo-García (rafael.mayo@ciemat.es) 
Ongoing research 

• Wind energy, Downscaling, Climate analysis 
 
Latest publications 

• Multidecadal to centennial surface wintertime wind variability over 
Northeastern North America via statistical downscaling. E. Lucio-
Eceiza et al. CLIMATE DYNAMICS  53 1-2, 41-66 (2019) 

• Quality Control of Surface Wind Observations in Northeastern North 
America. Part I: Data Management Issues. E. Lucio-Eceiza et al. 
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY  35 1, 
163-182 (2018) 

• Quality Control of Surface Wind Observations in Northeastern North 
America. Part II: Measurement Errors. E. Lucio-Eceiza et al. 
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY  35 1,  
183-205 (2018) 

 

Software Requirements 
 

Compiler and runtime 

• FORTRAN 90 or 95 and C,  

• Perl,  

• OpenMP,  

• MPI RSL-LITE 

External or Third-Party Libraries 

• Mandatory 
o netCDF-4,  

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/users_guide_chap5.html#Phys
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/users_guide_chap5.html#Phys
https://www2.mmm.ucar.edu/wrf/users/wrfv4.0/testing.html
https://github.com/wrf-model/WRF/wiki
https://www2.mmm.ucar.edu/wrf/users/pub-doc.html
mailto:jorge.navarro@ciemat.es
mailto:rafael.mayo@ciemat.es
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o PHD5,  
o GriB-1,  
o NCL,  
o RIB4,  
o ARWpost 

• Optional  
o PNETCDF 
o netCDF-4 (such as parallel I/O based on HDF5) 
o JasPer (an implementation of the JPEG2000 standard for 

"lossy" compression) 
o PNG (compression library for "lossless" compression) 
o zlib (a compression library used by the PNG library) 

Management tools 

• C-shell and Bourne shell, make, M4, sed, awk 

I/O Libraries 

• HDF5 

• netCDF 

Tools/Libraries for the code workflow 

 
 

Hardware Requirements 
 

Architectures/Machines Characterization 

Initially, WRF will be executed on ACME, a dedicated local cluster for R&D 
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purposes composed of  

• 14 PowerEdge C6420 nodes composed of:  
o 2 Intel Gold 6138 processor (20C/40T) @2,0 GHz  
o 192 GB RDIMM, 2667MT/s  
o IB FDR port  
o 2TB SATA @7.2 krpm and 240GB SSD SATA  

• 2 Bullx R424-E4 chassis with 4 computing nodes each  
o 2 Intel Xeon 8C processors E5-2640 V3 @2,6 GHz  
o DDR4 memory of 64 GB @2133 MHz  
o IB FDR port  
o 1 TB SAS2 disc @7.2 krpm and 1 SSD of 240 GB  

• 2 Bullx R421-E4 chassis  
o 2 Intel Xeon 8C processors E5-2640 V3 @2,6 GHz  
o DDR4 memory of 64 GB @2133 MHz  
o 1 TB SATA III disc @7.2 krpm and 1 SSD of 240 GB  
o 2 Tesla P100  

• 1 storage server composed of 48 disks (168 TB raw storage)  

• Rpeak = 59.40 TFlops  
 
Defined according to the current CIEMAT cluster: 

• 1 to 44 nodes PowerEdge C6420 with 2 Xeon Gold 6148 2,4Ghz 40 
cores/node 

• ram: 192 GB/node 

• Infiniband EDR 100Gb/s 

• Storage: 28 x disks 12TB 7.2K NLSAS 12GB 3,5” 

 

4.3.2 Tests conditions 

 

Computational Environment Description 

1 to 44 nodes PowerEdge C6420 with 2 Xeon Gold 6148 2,4Ghz 40 
cores/node 
ram: 192 GB/node 
Infiniband EDR 100Gb/s 
Storage: 28 x disks 12TB 7.2K NLSAS 12GB 3,5” 

 

Test Case Description 

Strong scalability test:  

• from1 up to 675 cores (it continuously crashed for the larger option) 
Weak scalability test:  

• 1.0·105 and 2.5·105 points per domain and core. Cores running from 
20 to 630 

 

4.3.3 Results 
 

Application structure 

The spatio-temporal structure of the run shows a pattern that is repeated 6 
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times in the iterative region. 
 
When we look at one iteration, the first part of the iteration corresponds to a 
region with an average of more than 24700 calls to MPI_Comm_rank() per 
process (in the whole iteration the number is around 25000). Despite the 
overhead to call the library to get the rank would be small, accessing to a 
local variable that stores the value would eliminate all these library calls. 
 
After discarding the initial phase of the iteration, we focused the analysis on 
a region that reflects the most common behavior. The profile of both the full 
iteration and the selected region validated the similarity with respect to the 
percentage of time on the different MPI calls (except for MPI_Comm_rank). 
We also validated the main efficiencies report very similar values with 
differences lower than 1.5%. 
 
The application shows a good granularity, where most of the time the 
computations last between tens of milliseconds up to 400 milliseconds. 

 

Efficiency analysis 

The efficiencies analysis allows to identify the observed problems on the 
scalability are correlated with serialization, transfer and computational 
scalability. On the other hand, the efficiency with 16 MPI processes is 80.5% 
and it is mainly caused by serialization and also a little of global load 
imbalance. We can consider that metrics above 80% report a good 
performance, while values under that threshold identify factors that are 
limiting the execution. 
 
The computation scalability is determined by the number of instructions and 
the instructions per cycle (IPC) in the computational phases. 
 
The total number of instructions executed by the computations increases a 
with the scale, suggesting a potential code replication or increase of 
instructions due to the higher number of boundary cells when increasing the 
scale. The efficiencies analysis also detects an improvement on the IPC with 
128 MPI ranks that compensates the increase on instructions making a small 
improvement of the computation when comparing 32 and 128 ranks. 
 
Efficiencies for 13, 32, 128 MPI ranks 
Global efficiency:       80.5/62.9/53.2 
Parallel efficiency:     80.5/76.9/64.6 
Load Balance:           92.2/92.4/92.3 
Communication eff. : 87.3/83.3/69.9 
Serialization              89.5/87.7/81.4 
Transfer                    97.6/95.0/85.9 
Computation scalability 100/81.7/82.4 
IPC Scaling efficiency              100/75.4/113.2 
Instructions Scaling efficiency  100/96.3/72.5 
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Scaling analysis 

The speed-up plot reports the scalability of the code has a small degradation 
with 32 processes and a significant reduction with 128. In a perfectly linear 
strong scaling execution, we expect that each time the number of processes 
doubles, the total execution time per iteration reduces by half. Going from 16 
to 128 we increase the resources by 8 and the execution obtains a 5.28x 
improvement (66% of the ideal speedup). 

 

MPI analysis 

The efficiencies and scalability analysis identified that the communications 
are the main bottleneck for the instrumented runs. The analysis also reports 
the main loose of efficiency is due to the serialization and dependencies 
between processes. The transfer of data that reported a good efficiency with 
16 tasks shows relevant reductions when the scale is increased. 
 
MPI_Alltoall : imbalance 
MPI_Alltoallv : transfer 
MPI_Wait : both (imbalance and transfer) 
 
improving the imbalance of the previous region would reduce the MPI_Wait 
time for these calls 

 

Computing performance  

This section analyses the efficiency and scalability of the WRF runs with 
respect to the execution of the serial computing regions. The efficiencies 
analysis identified the computation suffer a significant degradation mainly 
correlated with the total number of instructions executed. It also identified an 
improvement of the IPC with 128 MPI ranks as well as a reduction with 32 
ranks. 
 
With 32 processes, the IPC for almost all the regions is degraded while it 
improves with 128. The improvement with 128 cores may be expected due to 
the strong scaling approach that can improve cache access with a larger 
scale. It is more surprising the reduction of the IPC with 32 cores. 
 
With the available counters information collected there is not a clear 
justification of the cause, but it can be deeply analyzed in a performance plan 
if the user is interested. The IPC achieved by the other runs (16 and 128) are 
considered reasonable as they are bigger than 1 instruction per cycle for all 
the regions with a good IPC between 1.8 and 2.1 for the largest computing 
region. The trace files report that the increase of instructions is spread in most 
of the computations with an important increase on the largest and unbalanced 
computing phase. 

 

4.3.4 Conclusion 
 

Summary 
The parallel efficiency achieved is good for 16 and 32 processes but not for 128 
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(64.6% means the code spends close to 36% in the parallel runtime). It is 
recommended to use less than 128 processes or to increase the input case. 
 
The observed loose of efficiency is due to the serialization and temporal 
unbalances of the code that increase with the scale. The analysis identified 
different regions with temporal unbalances as well as how the imbalance of the 
largest computing region is absorbed by the point to point communications. 
 
The global balance of the code is good, and it does not increase with the scale 
in the range of MPI ranks analyzed.  
 
The IPC achieved is good with 16 ranks and improves with 128 but it decreases 
with 32. There is no justification for this decrease that can be deeply studied on 
a Performance Plan if the user is interested. 
 
The code has around 25000 calls to MPI_Comm_rank() per process on each 
iteration. Despite the overhead is small, checking a local variable is an easy 
solution to eliminate the library calls. 
 

Next steps 
Reduce the number of calls to MPI_Comm_Rank(). 
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4.4 SeisSol (Earth and Atmospheric Sciences) 
 

1.1.1 Overview 

SeisSol is a software package for simulating wave propagation and dynamic 
rupture based on the arbitrary high-order accurate derivative discontinuous 
Galerkin method (ADER-DG). Characteristics of the SeisSol simulation 
software are: 

• use of arbitrarily high approximation order in time and space (ADER-DG 
with Godunov flux formulation) 

• use of tetrahedral meshes to approximate complex 3D model geometries 
(faults & topography) for rapid model generation 

• use of elastic, viscoelastic and viscoplastic material to approximate 
realistic geological subsurface properties 

• parallel geo-information input (ASAGI) 

 

Code description 
 

Source Code Repository 

• SeisSol is available at https://github.com/SeisSol/SeisSol. 

Version 

• Rolling release mode 

Code Versioning Tool 

• Git and GitHub 

Sanity Check / Unit Testing Framework 

• SeisSol is regularly verified against community benchmark cases (e.g. 
LOH1, TPV12/13) 

• Cxxtest 

• Travis-ci 
SeisSol Autotuning Proxy (performance reproducer) 

Documentation 

• https://seissol.readthedocs.io/en/latest/  

Code Current Performance 

• Measured performances 
o Currently, SeisSol uses handwritten, embedded flop and time 

counters. Additionally, Score-P has been recently adapted for 
profiling our SeisSol proxy application. Furthermore, a report 
from POP already existed regarding the strong scaling 
properties of the code. 

• Recognized bottlenecks 
o SeisSol uses a hybrid architecture with one MPI rank per node 

and OpenMP parallelization within each node. A dedicated 
communication thread has allowed to improve the scaling 
properties. 

https://seissol.readthedocs.io/en/latest/
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o SeisSol features cluster-wise local time stepping. In the strong-
scaling limit small cluster sizes limit shared-memory scalability.   

• Memory bottlenecks 
o none 

• The POP audit showed good strong scalability up to 128 nodes (audit 
was performed for comparably small problem sizes). SeisSol weakly 
scales up to full machine runs on SuperMUC. 

Ongoing Research 

• Contact for ENERXICO related inquiries 
o Sebastian Wolf (wolf.sebastian@in.tum.de) 

• Ongoing research 
o Advanced elasticity models 
o Elastic – Acoustic coupling,  
o port to CUDA, not in the scope of ENERXICO but within the 

ChEESE Center of Excellence 

• Latest publications 
Computational 

o [1] A. Breuer, A. Heinecke, and M. Bader. “Petascale Local 
Time Stepping for the ADER-DG Finite Element Method”. In: 
2016 IEEE International Parallel and Distributed Processing 
Symposium (IPDPS). 2016 IEEE International Parallel and 
Distributed Processing Symposium (IPDPS). May 2016, pp. 
854–863.  

o [2] A. Heinecke et al. “Petascale High Order Dynamic Rupture 
Earthquake Simulations on Heterogeneous Supercomputers”. 
In: SC ’14: Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis. 
SC ’14: Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis. 
Nov. 2014, pp. 3–14.  

o [3] Carsten Uphoff et al. “Extreme Scale Multi-physics 
Simulations of the Tsunamigenic 2004 Sumatra Megathrust 
Earthquake”. In: Proceedings of the International Conference 
for High Performance Computing, Networking, Storage and 
Analysis. SC ’17. event-place: Denver, Colorado. New York, NY, 
USA: ACM, 2017, 21:1– 21:16.  

Scientific  
o [4] Thomas Ulrich, Alice-Agnes Gabriel, et al. “Dynamic 

viability of the 2016 Mw 7.8 Kaikoura earthquake cascade on 
weak crustal faults”. In: Nature Communications 10.1 (Mar. 14, 
2019), pp. 1–16.  

o [5] Thomas Ulrich, Stefan Vater, et al. Coupled, Physics-
based Modeling Reveals Earthquake Displacements are 
Critical to the 2018 Palu, Sulawesi Tsunami. preprint. 
EarthArXiv, Feb. 16, 2019.  

o [6] Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten 
Uphoff. “Off-fault plasticity in three-dimensional dynamic 
rupture simulations using a modal Discontinuous Galerkin 
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method on unstructured meshes: implementation, verification 
and application”. In: Geophysical Journal International 214.3 
(Sept. 1, 2018), pp. 1556–1584. 

 

Software Requirements 
 

Compiler and runtime 

• Intel, GNU 

External or Third-Party Libraries 

• Python/NumPy (for code generation) 

• parmetis 

• libxsmm 

• PspaMM (for Knights Landing or Skylake) 

• MPI 

• asagi (optional) 

Management tools 

• Scons 

• Travis-ci 

I/O Libraries 

• Netcdf 

• HDF5 

Tools/Libraries for the code workflow 

• Paraview (visualization) 

• gmsh (meshing for simple cases) 

• simmetrix (parallel meshing for advanced geometries) 

 

Hardware Requirements 
 

Architectures/Machines Characterization 

The typical use case are simulations with 10 to 20 million cells. On 
SuperMUC-NG this requires 50 to 100 nodes. Landmark simulations may use 
more than 200 million cells (with >100 Billion unknowns) on several 1000 
compute nodes. Currently SeisSol runs on CPU based clusters, e.g. 
SuperMUC-NG at LRZ or MareNostrum 4 at BSC. Nevertheless, for small 
meshes SeisSol also runs on consumer hardware.  
 
The memory requirements depend on the mesh size and on the chosen 
discretization order. For a mesh with 7 million cells at least 4 nodes on 
SuperMUC Phase 2 (i.e. 58 GB of RAM per node) are needed. In general, a 
lack of memory is not a problem.  
 
As part of the ChEESE project (https://cheese-coe.eu/) SeisSol is being 
ported to run on GPU based architectures. 

 

1.1.2 Tests conditions 
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The POP audit for the following results was performed within the ChEESE 
Centre of excellence. Extensive performance data is also available from 
SuperMUC and SuperMUC-NG. In ENERXICO we thus decided to not invest 
further work into additional performance analysis. 
 

Computational Environment Description 

• Platform: MareNostrum IV  

• 2 x Intel Xeon Platinum 8160 24C at 2.1 GHz per node 

• 97 or 384 GB of memory per node 

• Storage: 200 GB local SSD 

• Interconnection network: 100 Gb Intel OmniPath 

• Intel Compiler and MPI (2017.4) 

 

Test Case Description 

• Test were performed on a scenario for the simulation of the 2004 
sumatra earthquake.  

• mesh with 51,020,237 cells and 8,766,031 vertices: 

• Scale:  
o from 192 to 18432 cores (4 to 384 compute nodes) 
o each compute node with a single MPI rank, 47 OpenMP threads 

& 1 or 4 Pthreads 

• Score-P measurements of dedicated commThread build & runs 
directed by client 

o Pthread instrumentation plus manually-instrumented source 
regions 

 

1.1.3 Results 
 

Application structure 

First analysis with the small input case 

• 4 MPI ranks 

• each with 47 runtime OMP threads (captured as parent-less orphans) 
plus ‘commThread’ Pthreads bound to additional remaining core per 
node 

• 4 Pthreads (3 for MPI file I/O, and 1 for MPI communication) 

• only 1 Pthread (for MPI comm.) since file writing disabled 
 
Phases clearly identified in the trace file:  

• Initialization/setup 

• Simulate phase (Simulator::simulate) 

 

Efficiency analysis 

Efficiencies are computed for runs with 4, 8, 16, 32, 64, 128, 192, 256, 384 
nodes 
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• Global efficiency initially very good, and degrades relatively slowly with 
scale  

o Max/Min efficiencies : 0.95/0.72 

• Small Load balance efficiency remains very good with scale 
o Max/Min efficiencies : 0.96/0.92 

• Very good Communication efficiency (including OpenMP 
synchronization) 

o Max/Min efficiencies : 1.00/0.80 

• Computation efficiency relatively good 
o Max/Min efficiencies : 1.00/0.77 

• IPC efficiency relatively good 
o Max/Min efficiencies : 1.00/0.85 

• Very good Instructions scaling 
o Max/Min efficiencies : 1.00/0.97 

• Useful IPC very good 
o Max/Min : 1.60/1.89 

 

Scaling analysis 

Strong scaling 

• Medium-sized testcase (as previously) 

• Simulate time of test case for 2 time-steps 

• Scaling relative to the smallest configuration with 4 compute nodes 

• 1 MPI process per compute node 
o Original with 48 OpenMP threads 
o Dedicated commThread version with47 OpenMP threads 

(bound) 
o Dedicated commThread version w/o file writing 

• Original shows performance benefit to 128 nodes, but scales well only 
up to 16 nodes 

• Somewhat faster with dedicated core for commThread and much 
improved scaling to 128 nodes and beyond 

• File writing largely amortized to 128 nodes, but significant beyond that 
Strong scaling relative speedup  

• 80% scaling efficiency originally sustained to 32 compute nodes 

• 80% scaling efficiency extended to 128 compute nodes using 
dedicated commThread 

 

MPI analysis 

• Computation time increases very slowly with scale 

• MPI communication and synchronization are relatively small 

• OpenMP implicit barrier synchronization at end of parallel for loops 
grows progressively 

• Slow growth with scale of idle threads/cores until 192 nodes, then 
somewhat larger 

 

I/O analysis 

Medium-sized testcase (as previously) 
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• File writing failed for <64 nodes using commThread 
 
commThread file writing results in roughly 50 seconds slowdown of simulate 
time 

• Time for commThread file writing of around 150 seconds 
 
Dedicated commThread apparently overloaded 

 

1.1.4 Conclusion 
 

Summary 

• commThread variant has notably better performance and scalability than 
original 

o MPI communication and particularly file I/O ‘offload’ to POSIX 
threads bound to a dedicated core more than compensates for 
one less OpenMP thread 

• Scaling significantly improved with 80% scaling efficiency to 128 
compute nodes 

• File writing impacts the rest of the execution, reducing performance and 
scalability, most significantly for more than 128 compute nodes 

o lowers otherwise good Global & Communication efficiencies and 
deteriorates with scale 

o impacts otherwise excellent Load balance efficiency, with 
significant phases outside of OpenMP parallel regions when 
associated cores are idle 

• The audit setup was artificially I/O heavy, to over-emphasize I/O 
bottlenecks. 

• Computation efficiency and IPC relatively good 

 

Next steps  

• Performance optimization will concentrate on model extensions and on 
non-Intel architectures. 

Disclaimer 

• The use of MPI_THREAD_MULTIPLE is not supported by performance 
tools 

o where measurements are provided, they should be considered 
unreliable (until proven otherwise) 

• The use of OpenMP and Pthreads in combination is not supported 
o measurement of all threads as Pthreads may be possible, with 

OpenMP runtime threads captured as parent-less “orphan” 
threads 

o some or all OpenMP thread activity/events may be lost 
o manual instrumentation of OpenMP has been done to recover 

some activity but may be incomplete 
o Efficiency metrics are likely to be unreliable particularly with 

respect to multiple threads bound to a single core 
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4.5 ExaHyPE 
 

4.5.1 Overview 
 
The ExaHyPE engine solves systems of hyperbolic PDEs, as stemming from 
conservation laws. A concrete model for seismic wave propagation 
problems has been developed within the ExaHyPE project and is being further 
developed in the ChEESE cluster of excellence. ExaHyPE is based on high-
order Discontinuous Galerkin (DG) discretization on tree-structured Cartesian 
meshes. For non-linear problems it offers an a-priori Finite-Volume 
limiter. Parallelisation of the ExaHyPE engine relies on the 
underlying Peano framework for parallel adaptive mesh refinement. MPI is 
used for distributed-memory parallelism. For shared-memory parallelization, 
Intel’s TBB is used.  
 

Code description 
 

Source Code Repository 

• ExaHyPE is available at https://gitlab.lrz.de/exahype/ExaHyPE-
Engine 

Version 

• Rolling release mode 

• Stable version available 

Code Versioning Tool 

• Gitlab 

Sanity Check / Unit Testing Framework 

• Jenkins 

• Benchmarks for the main two application areas (seismology and 
astrophysics) 

Documentation 

• Guidebook: http://www.peano-framework.org/exahype/guidebook.pdf 

• Doxygen (class documentation): http://www.peano-
framework.org/exahype/ 

• Release paper: https://arxiv.org/abs/1905.07987 

Code Current Performance 

• Measured performances 
o The performance of the curvilinear mesh benefits from higher 

order (with a sweet spot at order 7) 
o The curvilinear method reaches around 100 Mdof/s on a single 

Intel Skylake node 
o Speedup and performance are almost independent of the order 

for the diffuse interface method 
o Peano’s geometrical domain-decomposition has load balancing 

sweet-spots at 1, 28 and 731 ranks. Thus, best scaling can be 
obtained via hybrid (MPI+TBB) parallelism: exploit MPI sweet 
spots and increase number of TBB-Threads per rank 

http://www.peano-framework.org/exahype/guidebook.pdf
http://www.peano-framework.org/exahype/
http://www.peano-framework.org/exahype/
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o Weak scaling can be obtained up to 731 Skylake nodes of 
SuperMUC-ng (approx. 2^15 cores) 

• Recognized bottlenecks 
o At a high parallelization level, the serial task production cannot 

be hidden behind the consumption 
o Shared Memory: Riemann solves still sequential 

• I/O limitations (serial) 
o IO was not tested 

• Memory bottlenecks 
o None known 

• Lack of scalability 
o Shared Memory scalability stagnates at around 14 cores 
o Distributed memory scaling only available at certain “sweet 

spots”, i.e. at 1,28, 731… ranks. This can be somewhat 
mitigated by a hybrid parallelization strategy. 

o Strong scaling only in very small regimes 

Ongoing Research 

• Contact 
o Anne Reinarz, Technical University of Munich 

(reinarz@in.tum.de) 

• Ongoing research 
o Code-generation and vectorization: Jean-Matthieu Gallard 

(TUM, ChEESE-COE) 
o Dynamic Rupture: Leonhard Rannabauer (TUM, ChEESE-

COE) 

• Latest publications 
Computational: 

o [1] J.-M. Gallard, L. Krenz, L. Rannabauer, A. Reinarz & M. 
Bader. Role-Oriented Code Generation in an Engine for 
Solving Hyperbolic PDE Systems. SC19 SE-HER 

o [2] A. Reinarz, D. Charrier, M. Bader, L. Bovard, M. Dumbser, 
K. Duru, F. Fambri, A.-A. Gabriel, J.-M. Gallard, S. K. 
Koeppel, L. Krenz, L. Rannabauer, L. Rezzolla, P. Samfass, 
M. Tavelli & T. Weinzierl. ExaHyPE: An Engine for Parallel 
Dynamically Adaptive Simulations of Wave Problems. 
Computer Physics Communications. Accepted, 2019. 

o [3] D. E. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. 
Dumbser, A. Kudryavtsev, A. Moskovsky, and T. Weinzierl. 
Studies on the energy and deep memory behaviour of a cache-
oblivious, task-based hyperbolic PDE solver. International 
Journal of High Performance Computing Applications. 
Accepted, 2019. 

Scientific: 
o [1] Kenneth Duru, Alice-Agnes Gabriel, and Gunilla Kreiss. 

On energy stable discontinuous Galerkin spectral element 
approximations of the perfectly matched layer for the wave 
equation. Computer Methods in Applied Mechanics and 
Engineering, 350:898–937, 2019. 
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o [2] Kenneth Duru, Leonhard Rannabauer, Alice-Agnes 
Gabriel, and Gunilla Kreiss. A stable discontinuous Galerkin 
method for the perfectly matched layer for elastodynamics in 
first order form. https://arxiv.org/abs/1910.06477, 2019. 

o [3] M. Dumbser, F. Fambri, E. Gaburro, and A. Reinarz. On 
GLM curl cleaning for a first order reduction of the CCZ4 
formulation of the Einstein field equations. Journal of 
Computational Physics, 2019. 

 

Software Requirements 
 

Compiler and runtime 

• Intel, GNU 

External or Third-Party Libraries 

• Python3 

• Intel’s TBB 2017 

• MPI, versions newer than 1.3 

• to use ExaHyPE’s optimized compute kernels, Intel’s libxsmm and the 
Python module Jinja2 are required.  

Management tools 

• GNU Make 

I/O Libraries 

• Limited HDF5 support available 

• Peano file format 

Tools/Libraries for the code workflow 

• Paraview/TecPlot 

 

Hardware Requirements 
 

Architectures/Machines Characterization 

The ExaHyPE project relies on code generation to tailor its compute kernels 
toward a given architecture. A focus is given to Intel Skylake architecture as 
it highlights the need for advanced data layout to exploit every vectorization 
opportunity and cache-aware kernels as cache misses become a significant 
performance bottleneck. ExaHyPE also been extensively tested on the Intel 
Haswell nodes of SuperMUC-Phase 2. 

 

4.5.2 Tests Conditions 
 

Computational Environment Description 

Processor  

• Intel Xeon Gold 6148 @ 2.4 GHz codename Skylake 
Interconnect  

• Infiniband EDR 100Gb/s 
Filesystem  

• Scratch Lustre DDN 7K 
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Job management system  

• SLURM 17.11.5 
 
Compiler 

• Intel Compiler 2018 build 5 
 
MPI  

• Intel MPI 2018 build 5 
 
Intra-node parallelism  

• Intel TBB 2018 build 5 
 
Flags 

• COMPILER_CFLAGS = -DTrackGridStatistics -g -03 -ip -fma -Wall -
restrict -std=c++11 -pedantic -qopenmp-simd -xCORE-AVX512 -qopt-
zmm-usage=high -DSharedTBB -DParallel -DnoPackedRecords -
DnoPersistentRegularSubtrees  -DIprobeEveryKIterations=0 -
DUsePeanosRLEBoundaryExchanger -
DUsePeanosRLEBoundaryExchangerForMetaData 
 

• COMPILER_LFLAGS = -xCORE-AVX512 -qopt-zmm-usage=high 
FCOMPILER_CFLAGS = -g -O2 -r8 -cpp -auto -qopenmp-simd -
xCORE-AVX512 -qopt-zmm-usage=high 
 
 

• PROJECT_CFLAGS = -DDim3 -DALIGNMENT=64 
 
Job resources 

• 7 nodes  

• 28 MPI processes 

• 4 MPI processes per node 

• 10 TBB-threads per MPI process  
 

 

Test Case Description 

The ExaSeis application on the ExaHyPE elastic solver. The latter is based 
on the underlying Peano framework. Peano linearizes the domain with a 
space filling curve. Distributed memory parallelization (MPI) is performed by 
assigning single sub-tree of the space-tree to MPI ranks. Within these sub-
trees, shared memory parallelization is built on a task-based paradigm (Intel 
TBB). 
The test case consists in a high order discontinuous Galerkin solver for elastic 
wave equation called Curvilinear available in the ExaSeis repository under 
Applications. 
 
This test setup models complex topographies by applying a curvilinear 
transformation to the elements of an adaptive Cartesian mesh. A mesh of  
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surface quadrature nodes is generated depending on the topography, 
creating a 2D curvilinear interpolation of those quadrature nodes on domain 
boundaries with topography curves and domain edges as constraints.   
 
With the curvilinear model we solve for the LOH.1 benchmark on a domain of 
size [47,47,47]. The mesh contained 27 elements in each direction, as well 
as one layer of adaptive mesh refinement near the jump in material 
parameters. The model was run for 100 time steps in each configuration with 
MPI and TBB parallelization enabled.   
 
The following optimization settings were used: 
 
"fuse_algorithmic_steps" : "all" 
"fuse_algorithmic_steps_rerun_factor" : 0.99 
"fuse_algorithmic_steps_diffusion_factor" : 0.99 
"spawn_predictor_as_background_thread" : true 
"spawn_amr_background_threads" : true 
"disable_vertex_exchange_in_time_steps" : true 
"time_step_batch_factor" : 1.0 
"disable_metadata_exchange_in_batched_time_steps" : true 
"double_compression" : 0.0 
"spawn_double_compression_as_background_thread" : false 
 
However, generic kernels were used. As such no architecture-specific 
optimizations were enabled in the following tests. 
 
In the experiments, 7 cluster nodes with Intel Skylake processors, each with 
80 logical CPUS were used to launch the application. The ExaHyPE-Elastic 
application scales well with 1, 28 et 731 MPI processes. As a result, the 28 
MPI processes configuration is used. 40 cores are loaded on each node with 
MPI processes or (TBB) threads. Increasing the number of TBB-threads, the 
best scaling is obtained with 10 threads.  

 

4.5.3 Results 
 

Performance overview 

The first step in analyzing the hybrid MPI/TBB application ExaHyPE is getting 
an overview of the performances. The profiler Intel Application Performance 
Snapshot is used. This includes information about MPI and multi-threading 
time and load balance, memory and disk usage and most used MPI 
operations. The tests were run with ExaHyPE’s “generic kernels”, which do 
not rely on optimized small matrix multiplication kernels (LIBXSMM, e.g.) – 
this explains the bad vectorization figures observed.   
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• I/Os 
In the Curvilinear test case, I/Os have been disabled in purpose. Therefore, it 
will not be investigated in this study.  

• Memory footprint  
The performance overview shows results on the per-process and per-node 
memory usage of both virtual and resident memory. For this specific test case, 
the application does not require a large amount of memory. The total memory 
available is 192 GB per node, while the maximum memory used is 6037 MB 
per node.  

• MPI time 
The MPI time is high and represents almost 31% of the elapsed time. it is highly 
used by the MPI function “Iprobe()” which is a non-blocking test for messages. 
Such problem may be caused by a non-optimal communication schema. On 
the other hand, it is shown that there is no MPI imbalance issue. Here, a 
dedicated rank oversees the load balance. Therefore, a big portion of time is 
spent in synchronizations. 

• Cache stalls  
A significant proportion of cycles (~32 %) are spent on data fetches from cache. 
The strategies adopted in the applications (data alignments …) do not seem to 
work optimally. Such issues are related to intra-node parallelization and 
therefore, the data sharing should be investigated in depth.  
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• Vectorization 
A significant fraction of floating-point arithmetic instructions (~93 %) are scalar 
and do not benefit from the advanced vectorization capabilities of the processor. 
Only a small portion of the code is vectorized (~7%) using AVX512 instruction 
set. This is due to the generic kernels employed in this test. In the optimized 
kernels a very high vectorization level is reached. 
 
 

Frequency dependency analysis 

The frequency dependency of the application is analyzed here.  
 

 
Figure 1: Frequency dependency analysis 

 
There is clearly a linear frequency dependency despite the MPI 
synchronizations. The application is 80 to 90% frequency dependent.  
 

 

MPI analysis 

There are several reasons for an application to be MPI-bound and some 
major reasons are : 

• High times inside the MPI library which occurs when a process waits 
for the data from other processes. Such problem was pointed out in 
the performance overview section earlier with the MPI Iprobe function.  

• Active communications 
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Figure 2: Rank-to-rank communication matrix: with respect to time (left) and 

data transfers (right). 

The message profile here above indicates the intensity of point-to-point 
communications for each sender-receiver pair. The vertical processes axis 
represents the senders and he horizontal processes axis represents the 
receivers.  
Such a communication pattern is unusual. Few MPI processes transfer large 
amount of data to other few MPI processes. MPI ranks 12, 13 and 15 utilize a 
large amount of time (more than x6) communicating as well. 
 

Computations analysis 

The most time-consuming loops/functions with floating-points operations are 
identified as : 

- Loop at line 284 in kernels::aderdg spaceTimePredictorLinear 
- Loop at line 298 in kernels::aderdg spaceTimePredictorLinear 
- Loop at line 270 in kernels::aderdg spaceTimePredictorLinear 
- Loop at line 312 in kernels::aderdg spaceTimePredictorLinear 
- Loop at line 45   in kernels::aderdg solutionUpdate 
- Function Elastic:ElasticWaveSolver::flux 
- Function Elastic:ElasticWaveSolver::nonConservativeProduct 
- Function Elastic:ElasticWaveSolver::multiplyMaterialParameterMatrix 
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Figure 3: Code regions with effective time utilization 

 
Figure 4: Code regions with memory bound problems and floating-point 

operations types 

Unfortunately, most of the intensive loops perform 100% scalar operations 
and/or suffer from memory bound issues due to data access. 
 

4.5.4 Conclusion 

 

Summary 
 
The ExaHyPE/ExaSeis application was tested on the Curvilinear case study. 
The analysis has shown a good efficiency although some issues have identified:  

• MPI issues due to large time with the Iprobe() function, a dedicated MPI 
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rank oversees the load balancing and spends a lot of time in 
synchronizations, 

• Cache stalls limit the performance of the application,  

• Despite the vectorization direction inserted in the code and forced by the 
compiler, the intensive parts of the code could not be vectorized.  

 
The final two issues have been resolved in the optimized kernels of ExaHyPE 
in the ChEESE-COE and a high-level of vectorization and reduction of the 
cache-stalls has been achieved. Future tests should work with directly with 
these optimized variants of the code. 

 

Next steps  
 
As for the next steps, the application presents some performance issues which 
can be investigated. These are some points which require a deeper analysis 
and first attempts for optimization:  

• Effect of the communication pattern, 

• Data sharing to improve cache utilization and avoid stalls, 
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4.6 SEM46 
 

4.6.1 Overview 

SEM46 is a 3D seismic modeling and inversion code, developed mainly in the 
frame of the SEISCOPE project (https://seiscope2.osug.fr/) for tackling 
modeling and full waveform inversion topics from the near surface to the deep 
crustal scale. The modeling kernel is based on spectral elements designed on  
Cartesian-based hexahedral meshes. The code implements in its current 
version elastic and visco-elastic equations for both modeling and inversion 
tasks. The inversion part is coupled with the non-linear Optimization toolbox of 
SEISCOPE (https://seiscope2.osug.fr/SEISCOPE-OPTIMIZATION-
TOOLBOX) in order to implement efficient large-scale non-linear optimization 
schemes.  

 

Code description 
 

Source Code Repository 

• SEM46 is available upon request to Romain Brossier 
romain.brossier@univ-grenoble-alpes.fr  
SEM46 relies on a BSD-like license but include restrictions for the 
diffusion, imposed by the funding partners of the SEISCOPE project. 

Version 

• Version 2.3 

Code Versioning Tool 

• SubVersioN 

Sanity Check / Unit Testing Framework 

• Some inner time measures are implemented, allowing to have 
reference times for each step on each test-case identified. 

Documentation 

• Up to date Manual available with the source code 

Code Current Performance 

• Measured performances 
o A few test cases are available in our data-base, based on intel 

Sandybridge, KNL and Skylake. 
 

Ongoing Research 

• Contact 
o Romain Brossier romain.brossier@univ-grenoble-alpes.fr  

• Ongoing research 
o implementation of fluid/solid coupled equations to tackle 

modeling and inversion in marine environments 
o extension to anisotropic media (the compute kernels of 

modeling and inversion implement anisotropy since the initial 
development of SEM46, but only isotropic I/Os are currently 
implemented) 

o Optimal-transport-based misfit function in the inversion 

https://seiscope2.osug.fr/
https://seiscope2.osug.fr/SEISCOPE-OPTIMIZATION-TOOLBOX
https://seiscope2.osug.fr/SEISCOPE-OPTIMIZATION-TOOLBOX
mailto:romain.brossier@univ-grenoble-alpes.fr
mailto:romain.brossier@univ-grenoble-alpes.fr
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• Latest publications 
o Phuong-Thu Trinh, Romain Brossier, Ludovic Metivier, 

Laure Tavard, and Jean Virieux. Efficient time-domain 3d 
elastic and visco-elastic FWI using a spectral-element method 
on flexible cartesian-based mesh. Geophysics, 84(1):R75--
R97, 2019. http://users.isterre.fr/brossier/Trinh_2019_GEO.pdf 

o Weiguang He, Romain Brossier, and Ludovic Métivier. 3d 
elastic fwi for land seismic data: A graph space ot approach. In 
SEG Technical Program Expanded Abstracts 2019, pages 
1320--1324, 2019. 
http://users.isterre.fr/brossier/He_2019_SEG.pdf 

o T.M. Irnaka, R. Brossier, L. Métivier, T. Bohlen, and Y. Pan. 
Towards 3d 9c elastic full waveform inversion of shallow seismic 
wavefields - case study ettlingen line. In Expanded Abstracts, 

81th Annual EAGE Conference & Exhibition, London, page We 
P01 04. EAGE, 2019. 
http://users.isterre.fr/brossier/Irnaka_2019_EAGE.pdf 

o P.T. Trinh, R. Brossier, L. Métivier, J. Virieux, and P. 
Wellington. Bessel smoothing filter for spectral-element mesh. 
Geophysical Journal International, 209(3):1489--1512, 2017. 
http://users.isterre.fr/brossier/Trinh_2017_GJI.pdf 
 
 

 

Software Requirements 
 

Compiler and runtime 

• Intel, GNU 

External or Third Party Libraries 

• MPI 

• External “in-house” libraries 

Management tools 

• Makefile 

I/O Libraries 

• MPI I/O 

Tools/Libraries for the code workflow 

• Paraview  

• Seismic Unix 

 

Hardware Requirements 
 

Architectures/Machines Characterization 

Hardware requirements vary a lot depending on the test case. The code runs 
on standard intel-based nodes usually, it is also working on intel KNL 

 
 

http://users.isterre.fr/brossier/Trinh_2019_GEO.pdf
http://users.isterre.fr/brossier/He_2019_SEG.pdf
http://users.isterre.fr/brossier/Irnaka_2019_EAGE.pdf
http://users.isterre.fr/brossier/Trinh_2017_GJI.pdf
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1.1.1 Tests Conditions (for POP audit) 
 

Computational Environment Description 

• Platform: MareNostrum IV  

• 2 x Intel Xeon Platinum 8160 24C at 2.1 GHz per node 

• 97 or 384 GB of memory per node 

• Storage: 200 GB local SSD 

• Interconnection network: 100 Gb Intel OmniPath 

 

Test Case Description 

Input case:  

• 2 different inputs from production runs.  

• Each input with 2 configurations  
o M1 – forward 1 shot,  
o M2 – FWI all waves 1 shot 

• Scale:  
o 48 cores for the small case,  
o 96 and 192 cores for the big case 

• Initial set-up: 9000 iterations. Reduced to 180 iterations after check 

 

1.1.2 Results 
 

Application structure 

First analysis with the small input case 

• 48 MPI,  

• 9000 iterations 
Phases clearly identified in the tracefile:  

• Initialization 

• iterative computation 
 
A quick look on this trace file showed there is no time correlation (similar 
unbalance in all the iterations) 

• Can focus the analysis in a smaller number of iterations 

 

Focus of Analysis 

• The selected focus of analysis is the 180 iterations as the M2 
configuration has two phases 

 

• The first phase of M2 configuration is very similar to M1 
 

• Zooming into a small area of M2 where we can see the iterations in 
both phases 

o With the small input, the granularity of the main computations 
in phase 1 for M1 and M2 are around 45 ms while M2 phase 2 
goes up to 63 ms. 

o The values grow to 90 ms and 123 ms on the big case 
o The two input cases cannot be used to analyze scaling  
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• The communications are done using MPI_Sendrecv() and the 
iterations are synchronized with MPI_Barrier() 

 

Efficiency analysis 

• The efficiencies are very good (smaller value 94.48).  

• Both input cases report lightly worst efficiency for M2 
o The degradation may be related with phase 2.  
o Seems to be correlated with load balance and serialization.  

• The IPC is a little bit low (smaller value 0.88) and should be the main 
target for optimizations. 

• The rest of the report would focus on M2 as M1 is equivalent to M2 
phase 1. 

Note:  

Efficiencies lower than 80% indicate space for improvement. Lower than 60% 
there is a clear need for improvement. Good IPC in MareNostrum use to be 
around 1.2 and 1.5 

 

Load balance 

• The Focus of the analysis is on small test case - M2 as it represents 
the execution with lower load balance (minimum value 97.16) 

• There is a structured pattern of unbalance that it is correlated with 
instructions unbalance. 

• The same structured unbalance appears in both phases. It is perhaps 
due to the domain decomposition. 

• In the analyzed executions (small and big test cases), there is no need 
to improve the load balance (lower unbalance is 97.16) 

 

Computations analysis 

• The same computational behavior is identified in both small and big 
runs 

• There is an increase in the number of instructions from the small to the 
big test cases 

• IPC for phase 1 seems acceptable while for phase 2, it has a lower 
value 

• Phase 2 should be the first target for optimizations 

 

MPI analysis 

• Both phases have a similar communication pattern 

• The only difference is that phase 2 has two calls to MPI_Barrier() per 
iteration, while phase 1 only has one call 

• As the synchronization is guaranteed by the MPI_Sendrecv() calls, all 
the calls to MPI_Barrier() can be eliminated in both phases.  

• Nevertheless, the impact would be small as the total MPI time is less 
than 6% in the worst case 
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• After eliminating the calls to MPI_Barrier(), the small M1 case was 
rerun but with a different number of iterations. Very similar results were 
obtained with differences lower than 1% 

• Nevertheless, the elimination of barriers would improve the execution 
at very large scales 

 

1.1.3 Conclusion 

 

Summary 

• The audit of SEM64 shows very good efficiencies for both input cases 
(small and big) and the two configurations (M1 and M2) 

 

• The analysis identified the weakest factor is a relatively low IPC on the 
main computations being worst for the second phase of M2. That should 
be the main target for optimizations of the code.  

 

• A very small unbalance correlated with the work distribution has been 
detected but the benefits improving it would be very limited.  

 

• The study allowed the user to identify that the calls to MPI_Barrier() were 
not needed. Moreover, despite the limited improvement they represent 
in the analyzed scale, it may make a significant difference when running 
at very large scales. 

 

Next steps  

• The first step of investigation is the improvement of the IPC for the 
second phase of M2 

• The second step of investigation is the improvement of the 
synchronization of MPI ranks by reducing the unnecessary MPI_Barrier() 
calls. At large scale executions, improvements should be observed.  
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5. DualSPHysics 
 

5.1.1 Overview 
 
DualSPHysics is a hardware accelerated Smoothed Particle Hydrodynamics 
code developed to solve free-surface flow problems. The code is developed to 
study free-surface flow phenomena where Eulerian methods can be difficult to 
apply, such as waves or impact of dam-breaks on off-shore structures. 
DualSPHysics is a set of C++, CUDA and Java codes designed to deal with 
real-life engineering problems. DualSPHysics is an open-source code 
developed and released under the terms of GNU General Public License 
(GPLv3). Along with the source code, a complete documentation that makes 
easy the compilation and execution of the source files is also distributed. The 
code has been shown to be efficient and reliable. The parallel power computing 
of Graphics Computing Units (GPUs) is used to accelerate DualSPHysics by 
up to two orders of magnitude compared to the performance of the serial 
version. 
 

Code description 
 

Source Code Repository 

• https://github.com/DualSPHysics/DualSPHysics/tree/develop 

Version 

• Version 4.4.036 

Code Versioning Tool 

• Git 

Sanity Check / Unit Testing Framework 

• None 

Documentation 

• Manual available at 

https://github.com/DualSPHysics/DualSPHysics/wiki 

Code Current Performance 

The performance tests are being conducted by Sandra Mendez 
(sandra.mendez@bsc.es). 

Ongoing Research 

• Contact 
Dr. José M. Domínguez (jmdominguez@uvigo.es) 

Dr. Jaime Klapp (jaime.klapp@inin.gob.mx) 

Full list of developers at https://dual.sphysics.org/index.php/developers/ 

• Latest publications 

• Reference paper: 
A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S. 
Longshaw, R. Canelas, R. Vacondio, A. Barreiro, O. García-Feal. 
2015. DualSPHysics: open-source parallel CFD solver on Smoothed 

https://github.com/DualSPHysics/DualSPHysics/tree/develop
https://github.com/DualSPHysics/DualSPHysics/wiki
mailto:jmdominguez@uvigo.es
https://dual.sphysics.org/index.php/developers/
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Particle Hydrodynamics (SPH). Computer Physics Communications, 
187: 204-216. doi:10.1016/j.cpc.2014.10.004. 
 

• Other references: 
J.M. Domínguez, A.J.C. Crespo, M. Hall, C. Altomare, M. Wu, V. 
Stratigaki, P. Troch, L. Cappietti, M. Gómez-Gesteira. 2019. SPH 
simulation of floating structures with moorings. Coastal Engineering, 
153, 103560. doi:10.1016/j.coastaleng.2019.103560. 
 
J.M. Domínguez, A.J.C. Crespo and M. Gómez-Gesteira. 2013. 
Optimization strategies for CPU and GPU implementations of a 
smoothed particle hydrodynamics method. Computer Physics 
Communications, 184(3): 617-627. doi:10.1016/j.cpc.2012.10.015. 
 
J. Klapp, O.S. Areu-Rangel, M. Cruchaga, R. Aránguiz, R. Bonasia, M. 
Godoy-Seura and R. Silva-Casarín.  2019. Tsunami hydrodynamic 
force on a building using a SPH real scale numerical simulation. 
Natural Hazards, Pags. 1-21.  doi: 10.1007/s11069-019-03800-3. 
 
C.E. Alvarado-Rodríguez, L.D.G. Sigalotti and J. and J. Klapp.  2019. 
Anisotropic dispersion with a consistent smoothed particle 
hydrodynamics scheme. Advances in Water Resources 131, 103374, 
doi: https://doi.org/10.1016/j.advwatres.2019.07.004 . 
 
Full list of references by developers at 
https://dual.sphysics.org/index.php/references/  

 

Software Requirements 
 

Compiler and runtime 

• gcc 7.3.0 

• CUDA 9.2 

External or Third Party Libraries 

• None 

Management tools 

• Cmake 

I/O Libraries 

• None 

Tools/Libraries for the code workflow 

• Own pre-processing and post-processing tools and ParaView 

 

Hardware Requirements 
 

Architectures/Machines Characterization 

• NVIDIA GPU Kepler or higher 

 
 

https://dual.sphysics.org/index.php/references/
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5.1.2 Tests Conditions 
 

Computational Environment Description 

IBM Power 8 and Power 9 machines 

 

Test Case Description 

In order to study the efficiency of the devices and the scaling of the 
DualSPHysics V4.4 code, a pipe flow was simulated using a Hagen-Poiseuille 
profile with the following characteristics. Internal radius nine centimeters and 
length two meters. The gravity was not considered. Instead an acceleration 
of 1 m / s was inserted in the positive direction of the x-axis. Periodic 
conditions at the inlet and outlet of the tube were considered. 
 
The purpose of the case study is to know the computation time that is carried 
out for different resolutions and computing equipment, as well as the 
convergence of the velocity profile inside the tube and its comparison with the 
analytical solution. One second of real time was simulated with a minimum 
time step of 0.00001 seconds to at best have only ten thousand time steps. 
 
The case study was executed for 1, 2, 4, 8, 16, 32, 64 and 128 million 
particles. The last case was only executed for the computer equipment that 
supported the required memory. 

 

5.1.3 Results 
 
Note that the same chapter structure is kept even if all inputs were not available 
at the moment. 
 

Application structure 

To be completed in the next deliverables 

 

Focus of Analysis 

To be completed in the next deliverables 

 

Efficiency analysis 

The results of the computation time for different equipment are presented in 
Table 1, Table 2 and Table 3. The velocity profile inside the tube is presented 
in Figure 5. 
Currently qualitative and quantitative comparison of the numerical results with 
the analytical solution is performed, as well as the evaluation of the 
convergence in the results. 
 

Power 8 P100 

Case 
Total number of 
particles 

Total execution 
time 

Total number of 
steps 

1 1020067 148.242599 10309 
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2 2154885 407.568939 13434 

3 4120704 899.27887 16515 

4 8012568 2161.48853 20665 

5 16130214 5647.53418 26307 

6 32615684 14604.1367 33205 

7 63847981 47323.9609 41623 

Table 1: Computation time and time steps executed on the IBM Power 8 
machine. 

 
Figure 5: Speed profile in m / s obtained after a second simulation. 

 

Power 9 V100 

Case 
Total number of 
particles 

Total execution 
time 

Total number of 
steps 

1 1020067 74.771965 10310 

2 2154885 188.661972 13436 

3 4120704 405.29187 16524 

4 8012568 952.104065 20663 

5 16130214 2419.27222 26295 

6 32615684 6103.99951 33198 

7 63847981 15040.0557 41623 

8 127251947 37498.9453 52267 

Table 2: Computation time and time steps executed on the IBM Power 9 
machine. 

 

NVIDIA V100 

Case 
Total number of 
particles 

Total execution 
time 

Total number of 
steps 

1 1020067 68.641159 10312 

2 2154885 178.312317 13437 

3 4120704 436.019562 16518 

4 8012568 897.938599 20665 

5 16130214 2291.48071 26302 

6 32615684 5776.74072 33209 

7 63847981 14194.5986 41619 
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8 127251947 35253.6016 52255 

Table 3: Computation time and time steps executed on the NVIDIA machine. 

 
Figure 6 and Figure 7 show the comparative graphs of the results presented 
in Table 1, Table 2 and Table 3. 
 
 

 
Figure 6: Execution time based on the total number of particles for the 
different computer equipment used. 

 

 
Figure 7: Execution time according to the total number of steps executed for 
the different computer equipment used. 

 

Load balance 

To be completed in the next deliverables 

 

Computations analysis 

To be completed in the next deliverables 
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MPI analysis 

To be completed in the next deliverables 

 

5.1.4 Conclusion 

 

Summary 
Qualitative and quantitative comparison of the numerical results with the 
analytical solution is performed, as well as the evaluation of the convergence 
in the results. With respect to the Nvidia K-40, the code at high resolution runs 
15 times faster with P100 and about 40-50s times faster with the V100. This 
effect shall be investigated in depth.  
 

Next steps  
As all the POP results (and used test cases) are not yet available, the next steps 
will consist in analyzing the optimization priorities linked to the research domain 
for Enerxico. The additional information will be gathered in the next deliverables 
allowing to provide an update of this deliverable. 
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6. Conclusion 
 

This deliverable shows a homogeneous scheme for the seven codes with 
variations depending on the level of performance of the applications. 
Some applications have more optimization and performance improvement 
possibilities because they are in "early stages" of scalability; and some others 
seem to have already a very good efficiency and scalability. For these ones, it 
could be more interesting to focus on the optimization of new features, as they 
will be developed for work packages 2, 3 and 4. 

 

The next steps section, at the end of the description and evaluation of each 
code, collects the observations and outlines the following actions, according to 
each case, to be carried out by developers or analysts. It provides the versatility 
to be as concise as “improvement of the IPC for the second phase of M2” for a 
given code or as flexible as “investigate the effect of new features in the overall 
performance” of another code. 

 

At this point all developers have already a detailed list of the most significant 
performance bottlenecks in their current code version, regarding in particular 
the parallelization of the code, the effect of communications when scaling, the 
overall instructions and IPC efficiency, the load balance for the main 
characteristics.  

 

Regarding the objectives of this deliverable, at least two performance 
bottlenecks have been identified. Below, the main performance bottlenecks are 
listed per application: 

 

1. ALYA: the main cause of efficiency loss is the load balancing issue. A shared 
memory parallel version of the function causing the load imbalance may 
mitigate this problem.  

2. BSIT: the roofline analysis shows a low arithmetic intensity, L1 and L2 
memory access should be improved to data reuse. GPU utilization shows 
that efficiency is bounded by the memory bandwidth. 

3. WRF: there is an effective good scalability up to 32 processes. To use more 
processes, it is recommended to increase the test case size. In general, the 
application presents good results in terms of efficiency, scalability and load 
balance. 

4. SeisSol: in previous audits and analysis, SeisSol shows excellent results in 
terms of node-level performance (on Intel architectures), scalability and load 
balance. The focus for performance optimization will therefore be on model 
extensions and on non-Intel architectures. 
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5. ExaHyPE: the analysis has shown a good efficiency although some issues 
have been identified: cache stalls limit the performance of the application 
and the compiler was not able to vectorize the intensive parts of the code. 

6. SEM46: the first track of optimization is the improvement of a relatively low 
IPC (Instruction Per Cycle) for the second configuration (Full Waveform 
Inversion with all waves and one shot)..The second track consist in the 
improvement of the MPI synchronizations by removing unnecessary 
barriers. 

7. DualSPHysics: The Mexican partners have started working on the 
application with a 6-month delay. The POP’s analysis of DualSPHysics is 
not yet completed. However, we have decided to share the preliminary 
information we have available for our use. 

 

 

Depending on the bottleneck issues, the optimization that will be performed 
may be considered as part of the task 1.1 “Intra-node optimization” or as part 
of the Task 1.2 “Multi-node optimization” :  for example, if there are issues at 
the communication level with load balancing, then any optimization performed 
in that direction will be linked to the Task 1.2, similarly if there is interest to 
vectorize the code to achieve a higher performance within a node, this will be 
linked to Task 1.1. 

 

The introduction of each next deliverables (“Report on intra-node and multi-
node optimizations for HPC codes” and “Report on enabling computational and 
energy efficient codes for the Exascale”) will present the choices that have been 
performed for each task and the reason why for a total transparency. 

 


